• 418.27 KB
  • 2021-11-12 发布

2018年四川省泸州市中考数学试卷含答案

  • 23页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2018年四川省泸州市中考数学试卷 ‎ ‎ 一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.‎ ‎1.(3分)在﹣2,0,,2四个数中,最小的是(  )‎ A.﹣2 B.0 C. D.2‎ ‎2.(3分)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为(  )‎ A.6.5×105 B.6.5×106 C.6.5×107 D.65×105‎ ‎3.(3分)下列计算,结果等于a4的是(  )‎ A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2‎ ‎4.(3分)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是(  )‎ A. B. C. D.‎ ‎5.(3分)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是(  )‎ A.50° B.70° C.80° D.110°‎ 23‎ ‎6.(3分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:‎ 年龄 ‎13‎ ‎14‎ ‎15‎ ‎16‎ ‎17‎ 人数 ‎1‎ ‎2‎ ‎2‎ ‎3‎ ‎1‎ 则这些学生年龄的众数和中位数分别是(  )‎ A.16,15 B.16,14 C.15,15 D.14,15‎ ‎7.(3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为(  )‎ A.20 B.16 C.12 D.8‎ ‎8.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为(  )‎ A.9 B.6 C.4 D.3‎ ‎9.(3分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是(  )‎ A.k≤2 B.k≤0 C.k<2 D.k<0‎ ‎10.(3分)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是(  )‎ 23‎ A. B. C. D.‎ ‎11.(3分)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为(  )‎ A.3 B.2 C. D.‎ ‎12.(3分)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为(  )‎ A.1或﹣2 B.或 C. D.1‎ ‎ ‎ 二、填空题(每小题3分,共12分)‎ ‎13.(3分)若二次根式在实数范围内有意义,则x的取值范围是   .‎ ‎14.(3分)分解因式:3a2﹣3=   .‎ ‎15.(3分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是   .‎ ‎16.(3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为   .‎ ‎ ‎ 23‎ 三、(每小题6分,共18分)‎ ‎17.(6分)计算:π0++()﹣1﹣|﹣4|.‎ ‎18.(6分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.‎ ‎19.(6分)化简:(1+)÷.‎ ‎ ‎ 四、(每小题7分,共14分)‎ ‎20.(7分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:‎ ‎(1)求n的值;‎ ‎(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;‎ ‎(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.‎ ‎21.(7分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.‎ ‎(1)甲、乙两种图书每本价格分别为多少元?‎ 23‎ ‎(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?‎ ‎ ‎ 五、(每小题8分,共16分)‎ ‎22.(8分)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).‎ ‎23.(8分)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).‎ ‎(1)求该一次函数的解析式;‎ ‎(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.‎ ‎ ‎ 六、(每小题12分,共24分)‎ ‎24.(12分)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.‎ 23‎ ‎(1)求证:CO2=OF•OP;‎ ‎(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.‎ ‎25.(12分)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.‎ ‎(1)求a的值和直线AB的解析式;‎ ‎(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;‎ ‎(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.‎ ‎ ‎ 23‎ ‎2018年四川省泸州市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.‎ ‎1.(3分)在﹣2,0,,2四个数中,最小的是(  )‎ A.﹣2 B.0 C. D.2‎ ‎【解答】解:由正数大于零,零大于负数,得 ‎﹣2<0<<2,‎ ‎﹣2最小,‎ 故选:A.‎ ‎ ‎ ‎2.(3分)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为(  )‎ A.6.5×105 B.6.5×106 C.6.5×107 D.65×105‎ ‎【解答】解:6500000=6.5×106,‎ 故选:B.‎ ‎ ‎ ‎3.(3分)下列计算,结果等于a4的是(  )‎ A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2‎ ‎【解答】解:A、a+3a=4a,错误;‎ B、a5和a不是同类项,不能合并,故此选项错误;‎ C、(a2)2=a4,正确;‎ D、a8÷a2=a6,错误;‎ 故选:C.‎ ‎ ‎ 23‎ ‎4.(3分)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是(  )‎ A. B. C. D.‎ ‎【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,‎ 故选:B.‎ ‎ ‎ ‎5.(3分)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是(  )‎ A.50° B.70° C.80° D.110°‎ ‎【解答】解:∵∠BAC的平分线交直线b于点D,‎ ‎∴∠BAD=∠CAD,‎ ‎∵直线a∥b,∠1=50°,‎ ‎∴∠BAD=∠CAD=50°,‎ ‎∴∠2=180°﹣50°﹣50°=80°.‎ 故选:C.‎ ‎ ‎ ‎6.(3分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:‎ 23‎ 年龄 ‎13‎ ‎14‎ ‎15‎ ‎16‎ ‎17‎ 人数 ‎1‎ ‎2‎ ‎2‎ ‎3‎ ‎1‎ 则这些学生年龄的众数和中位数分别是(  )‎ A.16,15 B.16,14 C.15,15 D.14,15‎ ‎【解答】解:由表可知16岁出现次数最多,所以众数为16岁,‎ 因为共有1+2+2+3+1=9个数据,‎ 所以中位数为第5个数据,即中位数为15岁,‎ 故选:A.‎ ‎ ‎ ‎7.(3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为(  )‎ A.20 B.16 C.12 D.8‎ ‎【解答】解:∵四边形ABCD是平行四边形,‎ ‎∴OA=OC,‎ ‎∵AE=EB,‎ ‎∴OE=BC,‎ ‎∵AE+EO=4,‎ ‎∴2AE+2EO=8,‎ ‎∴AB+BC=8,‎ ‎∴平行四边形ABCD的周长=2×8=16,‎ 故选:B.‎ ‎ ‎ ‎8.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为(  )‎ 23‎ A.9 B.6 C.4 D.3‎ ‎【解答】解:由题意可知:中间小正方形的边长为:a﹣b,‎ ‎∵每一个直角三角形的面积为:ab=×8=4,‎ ‎∴4×ab+(a﹣b)2=25,‎ ‎∴(a﹣b)2=25﹣16=9,‎ ‎∴a﹣b=3,‎ 故选:D.‎ ‎ ‎ ‎9.(3分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是(  )‎ A.k≤2 B.k≤0 C.k<2 D.k<0‎ ‎【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,‎ 解得k<2.‎ 故选:C.‎ ‎ ‎ ‎10.(3分)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是(  )‎ A. B. C. D.‎ ‎【解答】解:如图作,FN∥AD,交AB于N,交BE于M.‎ 23‎ ‎∵四边形ABCD是正方形,‎ ‎∴AB∥CD,∵FN∥AD,‎ ‎∴四边形ANFD是平行四边形,‎ ‎∵∠D=90°,‎ ‎∴四边形ANFD是解析式,‎ ‎∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,‎ ‎∵AN=BN,MN∥AE,‎ ‎∴BM=ME,‎ ‎∴MN=a,‎ ‎∴FM=a,‎ ‎∵AE∥FM,‎ ‎∴===,‎ 故选:C.‎ ‎ ‎ ‎11.(3分)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为(  )‎ A.3 B.2 C. D.‎ ‎【解答】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,‎ 当x=0时,y=x+2=2,则D(0,2),‎ 当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),‎ ‎∴CD==4,‎ 23‎ ‎∵OH•CD=OC•OD,‎ ‎∴OH==,‎ 连接OA,如图,‎ ‎∵PA为⊙O的切线,‎ ‎∴OA⊥PA,‎ ‎∴PA==,‎ 当OP的值最小时,PA的值最小,‎ 而OP的最小值为OH的长,‎ ‎∴PA的最小值为=.‎ 故选:D.‎ ‎ ‎ ‎12.(3分)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为(  )‎ A.1或﹣2 B.或 C. D.1‎ ‎【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),‎ ‎∴对称轴是直线x=﹣=﹣1,‎ ‎∵当x≥2时,y随x的增大而增大,‎ ‎∴a>0,‎ ‎∵﹣2≤x≤1时,y的最大值为9,‎ ‎∴x=1时,y=a+2a+3a2+3=9,‎ ‎∴3a2+3a﹣6=0,‎ 23‎ ‎∴a=1,或a=﹣2(不合题意舍去).‎ 故选:D.‎ ‎ ‎ 二、填空题(每小题3分,共12分)‎ ‎13.(3分)若二次根式在实数范围内有意义,则x的取值范围是 x≥1 .‎ ‎【解答】解:∵式子在实数范围内有意义,‎ ‎∴x﹣1≥0,‎ 解得x≥1.‎ 故答案为:x≥1.‎ ‎ ‎ ‎14.(3分)分解因式:3a2﹣3= 3(a+1)(a﹣1) .‎ ‎【解答】解:3a2﹣3,‎ ‎=3(a2﹣1),‎ ‎=3(a+1)(a﹣1).‎ 故答案为:3(a+1)(a﹣1).‎ ‎ ‎ ‎15.(3分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是 6 .‎ ‎【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,‎ ‎∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,‎ ‎∴=+====6.‎ 故答案为:6.‎ ‎ ‎ ‎16.(3分)如图,等腰△‎ 23‎ ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为 13 .‎ ‎【解答】解:如图作AH⊥BC于H,连接AD.‎ ‎∵EG垂直平分线段AC,‎ ‎∴DA=DC,‎ ‎∴DF+DC=AD+DF,‎ ‎∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,‎ ‎∵•BC•AH=120,‎ ‎∴AH=12,‎ ‎∵AB=AC,AH⊥BC,‎ ‎∴BH=CH=10,‎ ‎∵BF=3FC,‎ ‎∴CF=FH=5,‎ ‎∴AF===13,‎ ‎∴DF+DC的最小值为13.‎ 故答案为13.‎ ‎ ‎ 三、(每小题6分,共18分)‎ ‎17.(6分)计算:π0++()﹣1﹣|﹣4|.‎ ‎【解答】解:原式=1+4+2﹣4=3.‎ 23‎ ‎ ‎ ‎18.(6分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.‎ ‎【解答】证明:∵DA=BE,‎ ‎∴DE=AB,‎ 在△ABC和△DEF中,‎ ‎,‎ ‎∴△ABC≌△DEF(SSS),‎ ‎∴∠C=∠F.‎ ‎ ‎ ‎19.(6分)化简:(1+)÷.‎ ‎【解答】解:原式=•‎ ‎=.‎ ‎ ‎ 四、(每小题7分,共14分)‎ ‎20.(7分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:‎ ‎(1)求n的值;‎ ‎(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;‎ ‎(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.‎ 23‎ ‎【解答】解:(1)n=5÷10%=50;‎ ‎(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),‎ ‎1200×=240,‎ 所以估计该校喜爱看电视的学生人数为240人;‎ ‎(3)画树状图为:‎ 共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,‎ 所以恰好抽到2名男生的概率==.‎ ‎ ‎ ‎21.(7分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.‎ ‎(1)甲、乙两种图书每本价格分别为多少元?‎ ‎(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?‎ ‎【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,‎ 根据题意可得:﹣=24,‎ 解得:x=20,‎ 经检验得:x=20是原方程的根,‎ 则2.5x=50,‎ 23‎ 答:乙图书每本价格为20元,则甲图书每本价格是50元;‎ ‎(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,‎ 故50x+20(2x+8)≤1060,‎ 解得:x≤10,‎ 故2x+8≤28,‎ 答:该图书馆最多可以购买28本乙图书.‎ ‎ ‎ 五、(每小题8分,共16分)‎ ‎22.(8分)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).‎ ‎【解答】解:由题意知:BC=6AD,AE+BE=AB=90m 在Rt△ADE中,tan30°=,sin30°=‎ ‎∴AE==AD,DE=2AD;‎ 在Rt△BCE中,tan60°=,sin60°=,‎ ‎∴BE==2AD,CE==4AD;‎ ‎∵AE+BE=AB=90m ‎∴AD+2AD=90‎ ‎∴AD=10(m)‎ 23‎ ‎∴DE=20m,CE=120m ‎∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,‎ ‎∴∠DEC=90°‎ ‎∴CD===20(m)‎ 答:这两座建筑物顶端C、D间的距离为20m.‎ ‎ ‎ ‎23.(8分)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).‎ ‎(1)求该一次函数的解析式;‎ ‎(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.‎ ‎【解答】解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b 得:‎ 解得:‎ ‎∴一次函数解析式为:y=﹣‎ ‎(2)分别过点C、D做CA⊥y轴于点A,DB⊥y轴于点B 23‎ 设点C坐标为(a,b),由已知ab=m 由(1)点E坐标为(0,9),则AE=9﹣b ‎∵AC∥BD,CD=CE ‎∴BD=2a,EB=2(9﹣b)‎ ‎∴OB=9﹣2(9﹣b)=2b﹣9‎ ‎∴点D坐标为(2a,2b﹣9)‎ ‎∴2a•(2b﹣9)=m 整理得m=6a ‎∵ab=m ‎∴b=6‎ 则点D坐标化为(a,3)‎ ‎∵点D在y=﹣图象上 ‎∴a=4‎ ‎∴m=ab=24‎ ‎ ‎ 六、(每小题12分,共24分)‎ ‎24.(12分)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.‎ ‎(1)求证:CO2=OF•OP;‎ ‎(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.‎ 23‎ ‎【解答】(1)证明:∵PC是⊙O的切线,‎ ‎∴OC⊥PC,‎ ‎∴∠PCO=90°,‎ ‎∵AB是直径,EF=FD,‎ ‎∴AB⊥ED,‎ ‎∴∠OFD=∠OCP=90°,‎ ‎∵∠FOD=∠COP,‎ ‎∴△OFD∽△OCP,‎ ‎∴=,∵OD=OC,‎ ‎∴OC2=OF•OP.‎ ‎(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.‎ 在Rt△POC中,∵PC2+OC2=PO2,‎ ‎∴(4)2+r2=(r+4)2,‎ ‎∴r=2,‎ ‎∵CM==,‎ ‎∵DC是直径,‎ ‎∴∠CEF=∠EFM=∠CMF=90°,‎ 23‎ ‎∴四边形EFMC是矩形,‎ ‎∴EF=CM=,‎ 在Rt△OEF中,OF==,‎ ‎∴EC=2OF=,‎ ‎∵EC∥OB,‎ ‎∴==,‎ ‎∵GH∥CM,‎ ‎∴==,‎ ‎∴GH=.‎ ‎ ‎ ‎25.(12分)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.‎ ‎(1)求a的值和直线AB的解析式;‎ ‎(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;‎ ‎(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.‎ ‎【解答】解:(1)把点A(4,0)代入,得 ‎0=a•42﹣(2a﹣)×4+3‎ 23‎ 解得 a=﹣‎ ‎∴函数解析式为:y=‎ 设直线AB解析式为y=kx+b 把A(4,0),B(0,3)代入 解得 ‎∴直线AB解析式为:y=﹣‎ ‎(2)由已知,‎ 点D坐标为(m,﹣)‎ 点E坐标为(m,﹣)‎ ‎∴AC=4﹣m DE=(﹣)﹣(﹣)=﹣‎ ‎∵BC∥y轴 ‎∴‎ ‎∴AE=‎ ‎∵∠DFA=∠DCA=90°,∠FBD=∠CEA ‎∴△DEF∽△AEC ‎∵S1=4S2‎ ‎∴AE=2DE ‎∴‎ 解得m1=,m2=﹣(舍去)‎ 故m值为 ‎(3)如图,过点G做GM⊥DC于点M 23‎ 由(2)DE=﹣‎ 同理HG=﹣‎ ‎∵四边形DEGH是平行四边形 ‎∴﹣=﹣‎ 整理得:(n﹣m)[]=0‎ ‎∵m≠n ‎∴m+n=4,即n=4﹣m ‎∴MG=n﹣m=4﹣2m 由已知△EMG∽△BOA ‎∴‎ ‎∴EG=‎ ‎∴▱DEGH周长L=2[﹣+]=﹣‎ ‎∵a=﹣<0‎ ‎∴m=﹣时,L最大.‎ ‎∴n=4﹣=‎ ‎∴G点坐标为(,)‎ ‎ ‎ 23‎