- 346.49 KB
- 2021-11-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题 10 分式方程及其应用
1.的定义:分母中含有未知数的方程叫做分式方程.
2.解分式方程的一般方法:解分式方程的思想是将“分式方程”转化为“整式方程”。
(1)去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);
(2)按解整式方程的步骤求出未知数的值;
(3)验根:将所得的根代入最简公分母,若等于零,就是增根,原分式方程无解;若不等于零,就是原方程
的根。
【例题 1】(2020•哈尔滨)方程
香䁕
香
的解为( )
A.x=﹣1 B.x=5 C.x=7 D.x=9
【对点练习】(2019▪黑龙江哈尔滨)方程 = 的解为( )
A.x= B.x= C.x= D.x=
【例题 2】(2020•齐齐哈尔)若关于 x 的分式方程
香
香 香
5 的解为正数,则 m 的取值范围为( )
A.m<﹣10 B.m≤﹣10
C.m≥﹣10 且 m≠﹣6 D.m>﹣10 且 m≠﹣6
【对点练习】(2019•江苏宿迁)关于 x 的分式方程 + =1 的解为正数,则 a 的取值范围是 .
【例题 3】(2020•长沙)随着 5G 网络技术的发展,市场对 5G 产品的需求越来越大,为满足市场需求,某大
型 5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产 30 万件产品,现在
生产 500 万件产品所需时间与更新技术前生产 400 万件产品所需时间相同.设更新技术前每天生产 x 万件
产品,依题意得( )
A.
ㄠㄠ
香 ㄠ
䁕ㄠㄠ
B.
ㄠㄠ
䁕ㄠㄠ
香 ㄠ
C.
ㄠㄠ
䁕ㄠㄠ
香 ㄠ
D.
ㄠㄠ
香 ㄠ
䁕ㄠㄠ
【对点练习】(2019 吉林长春)为建国 70 周年献礼,某灯具厂计划加工 9000 套彩灯,为尽快完成任务,实
际每天加工彩灯的数量是原计划的 1.2 倍,结果提前 5 天完成任务。求该灯具厂原计划每天加工这种彩灯
的数量.
【例题 4】(2020 贵州黔西南)“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也
给自行车商家带来商机.某自行车行经营的 A 型自行车去年销售总额为 8 万元.今年该型自行车每辆售价
预计比去年降低 200 元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少 10%,求:
(1)A 型自行车去年每辆售价多少元;
(2)该车行今年计划新进一批 A 型车和新款 B 型车共 60 辆,且 B 型车的进货数量不超过 A 型车数量的两倍.已
知,A 型车和 B 型车的进货价格分别为 1500 元和 1800 元,计划 B 型车销售价格为 2400 元,应如何组织进
货才能使这批自行车销售获利最多.
【对点练习】(2020•广东)某社区拟建 A,B 两类摊位以搞活“地摊经济”,每个 A 类摊位的占地面积比每个
B 类摊位的占地面积多 2 平方米.建 A 类摊位每平方米的费用为 40 元,建 B 类摊位每平方米的费用为 30 元.用
60 平方米建 A 类摊位的个数恰好是用同样面积建 B 类摊位个数的
䁕
.
(1)求每个 A,B 类摊位占地面积各为多少平方米?
(2)该社区拟建 A,B 两类摊位共 90 个,且 B 类摊位的数量不少于 A 类摊位数量的 3 倍.求建造这 90 个摊
位的最大费用.
一、选择题
1.(2020•黑龙江)已知关于 x 的分式方程
香 香
4
香
的解为正数,则 k 的取值范围是( )
A.﹣8<k<0 B.k>﹣8 且 k≠﹣2 C.k>﹣8 且 k≠2 D.k<4 且 k≠﹣2
2.(2020•泸州)已知关于 x 的分式方程
香 香
2
香
香
的解为非负数,则正整数 m 的所有个数为( )
A.3 B.4 C.5 D.6
3.(2020•成都)已知 x=2 是分式方程
香
香
香
1 的解,那么实数 k 的值为( )
A.3 B.4 C.5 D.6
4.(2019•广东省广州市)甲、乙二人做某种机械零件,已知每小时甲比乙少做 8 个,甲做 120 个所用的时间
与乙做 150 个所用的时间相等,设甲每小时做 x 个零件,下列方程正确的是( )
A. = B. =
C. = D. =
5.(2019 黑龙东地区)已知关于 x 的分式方程 2 13
x m
x
的解是非正数,则 m 的取值范围是( )
A.m≤3 B.m<3 C.m>-3 D.m≥-3
6.(2019 山东淄博)解分式方程 = ﹣2 时,去分母变形正确的是( )
A.﹣1+x=﹣1﹣2(x﹣2) B.1﹣x=1﹣2(x﹣2)
C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)
7.(2019•广西贵港)若分式 的值等于 0,则 x 的值为( )
A.±1 B.0 C.﹣1 D.1
8.(2019•湖北十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有 6000 米的钢轨需要铺设,为
确保年底通车,如果实际施工时每天比原计划多铺设 20 米,就能提前 15 天完成任务.设原计划每天铺设
钢轨 x 米,则根据题意所列的方程是( )
A. ﹣ =15 B. ﹣ =15
C. ﹣ =20 D. ﹣ =20
9. (2019•山东省济宁市)世界文化遗产“三孔”景区已经完成 5G 基站布设,“孔夫子家”自此有了 5G 网络.5G
网络峰值速率为 4G 网络峰值速率的 10 倍,在峰值速率下传输 500 兆数据,5G 网络比 4G 网络快 45 秒,求
这两种网络的峰值速率.设 4G 网络的峰值速率为每秒传输 x 兆数据,依题意,可列方程是( )
A. ﹣ =45B. ﹣ =45
C. ﹣ =45D. ﹣ =45
10.(2019•江苏苏州)小明 5 元买售价相同的软面笔记本,小丽用 24 元买售价相同的硬面笔记本(两人的钱
恰好用完),已知每本硬面笔记本比软面笔记本贵 3 元,且小明和小丽买到相同数量的笔记本,设软面笔记
本每本售价为 x 元,根据题意可列出的方程为( )
A. 15 24
3x x
B.15 24
3x x
C. 15 24
3x x
D. 15 24
3x x
二、填空题
11.(2020•徐州)方程
香
的解为 .
12.(2020•盐城)分式方程
香
0 的解为 x= .
13.(2020•广元)关于 x 的分式方程
香 香
2=0 的解为正数,则 m 的取值范围是 .
14.(2019•甘肃)分式方程 = 的解为 .
15.(2019•山东省滨州市)方程 +1= 的解是 .
16.(2019▪湖北黄石)分式方程: ﹣ =1 的解为 .
17.(2019 四川巴中)若关于 x 的分式方程 + =2m 有增根,则 m 的值为 .
18.(2019•江苏宿迁)关于 x 的分式方程 + =1 的解为正数,则 a 的取值范围是 .
19.(2019•贵州省安顺市)某生态示范园计划种植一批蜂糖李,原计划总产量达 36 万千克,为了满足市场需
求,现决定改良蜂糖李品种,改良后平均每亩产量是原计划的 1.5 倍,总产量比原计划增加了 9 万千克,
种植亩数减少了 20 亩,则原计划和改良后平均每亩产量各多少万千克?设原计划平均亩产量为 x 万千克,
则改良后平均每亩产量为 1.5x 万千克,根据题意列方程为 .
20. (2019 黑龙江绥化)甲乙两辆汽车同时从 A 地出发,开往相距 200km 的 B 地,甲,乙两车的速度之比是 4:5,
结果乙车比甲车早 30 分钟到达 B 地,则甲车速度为______km/h.
三、解答题
21.(2020•湘潭)解分式方程:
香 香
2
香
.
22.(2020•陕西)解分式方程:
香
香
香
1.
24.(2020•牡丹江)某商场准备购进 A,B 两种书包,每个 A 种书包比 B 种书包的进价少 20 元,用 700 元购
进 A 种书包的个数是用 450 元购进 B 种书包个数的 2 倍,A 种书包每个标价是 90 元,B 种书包每个标价是
130 元.请解答下列问题:
(1)A,B 两种书包每个进价各是多少元?
(2)若该商场购进 B 种书包的个数比 A 种书包的 2 倍还多 5 个,且 A 种书包不少于 18 个,购进 A,B 两种书
包的总费用不超过 5450 元,则该商场有哪几种进货方案?
(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出 5 个书包赠送给某希望小学,剩余的书包全
部售出,其中两种书包共有 4 个样品,每种样品都打五折,商场仍获利 1370 元.请直接写出赠送的书包和
样品中,B 种书包各有几个?
相关文档
- 真题解析2020辽宁省丹东市中考语文2021-11-1234页
- 中考数学专题复习练习:含有字母系数2021-11-1211页
- 杭州专版2020中考生物复习专题05人2021-11-125页
- 中考数学三轮真题集训冲刺知识点392021-11-1211页
- 2016届北京市大兴区重点中学第一学2021-11-129页
- 2009中考数学分类汇编-二次函数2021-11-1243页
- 2014年山东省东营市初中学生学业考2021-11-1214页
- 2020年中考物理一轮复习讲练测专题2021-11-1210页
- 2020中考数学试题分项版解析汇编(第2021-11-1248页
- 2020版中考道德与法治一练通第二部2021-11-1223页