• 926.50 KB
  • 2021-12-23 发布

五年级上册数学教案-5组合图形的面积 ▏沪教版 (1)

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
教学内容:五年级第一学期(试用本)p84图形的面积 教学目标: ‎ ‎1、能通过观察,弄清图形的组合关系,运用割、补等多种方法求组合图形的面积。‎ ‎2、自主探索,合作交流。培养学生认真思考、团结协作的能力。 ‎ ‎3、培养学生运用转化的思想来解决新问题的能力。‎ 教学重点、难点:‎ 重点:将组合图形转化成已学过的几个基本图形,从而计算面积。‎ 难点:将一个组合图形分解成几个基本平面图形。‎ 教学过程:‎ 一、我们来回顾 ‎1、媒体出示各种基本图形 师:同学们,我们之前学过了很多图形。你能快速说出下列图形及其面积的字母公式吗?‎ 回顾所学过的图形的面积公式。‎ ‎1、长方形的面积计算公式: ‎ ‎2、正方形的面积计算公式: ‎ ‎3、平行四边形面积计算公式: ‎ ‎4、三角形的面积计算公式: ‎ ‎5、梯形的面积计算公式: ‎ 师:请同学们快速计算图形的面积。‎ 生:图1:3×5=15cm² 图2:4×5÷2=10cm² 图3:(4+6)×4÷2=20dm²‎ 师:同学们,我们已经学过了如何计算组合图形的面积,请你来观察下面的组合图形,想一想用怎样的方法能最方便的求出它的面积。‎ 师:‎ 4‎ 针对不同的图形我们可以通过割、补等方法将组合图形转化成一些基本图形,然后准确找到每个基本图形所对应的条件,计算出面积,最后通过加、减等方法求出整个图形的面积。这就是我们计算组合图形面积的思考方式。(板式)今天我们将运用这一思考方式继续来研究有关组合图形面积的问题。(板式课题)‎ 二、我们来探究 师: (少先队队旗)‎ 师:这是什么?(队旗)出示数据。‎ 你能过学过的知识求出队旗的面积吗?‎ ‎2、讨论 ‎3、汇报 ‎30‎ 方法一 长方形的面积+三角形面积+三角形面积 S长=(80-20)×60=3600(cm2)‎ S△=30×20÷2=300(cm2)‎ S总=3600+2×300‎ ‎=3600+600‎ ‎=4200(cm2)‎ ‎30‎ 方法二 梯形的面积+梯形的面积 S梯(80+80-20)×30÷2‎ ‎ =140×30÷2‎ ‎ =2100(cm2)‎ S总=2100×2=4200(cm2)‎ 4‎ ‎30‎ 方法三 长方形的面积-三角形的面积 S长=80×60=4800(cm2)‎ S△= 60×20÷2=600(cm2)‎ S总=4800-600=4200(cm2)‎ 三、我们来发现 学校12.29就是足球节啦,体育老师们要做一块装饰板。他们想请同学们帮忙计算一下,这块装饰板有多大?请你试试能用几种不同的方法求出面积。(学生独立练习,集体交流)‎ ‎ ‎ ‎ (单位:分米)‎ 师:感谢同学们用你们自己的方法帮助老师找出了答案。对于一个问题,你们想到了许多种解决方法。有的简单,有的比较复杂。在数学学习中,当我们碰到一个问题时,我们要试着多从不同的角度来思考,探寻出解决问题的捷径。这就是数学有趣的地方。‎ ‎ 我们的下一个问题就需要你去好好的探寻,愿意试一试吗?‎ 师:同学们,你们很棒。通过多角度的思考,你们找到了解决问题的捷径。但这些题目有一个共同点,那就是我们所需要的条件,都能很容易的找到。但有时图形的条件隐藏着,需要我们认真的专研才能找到。你们愿意去专研吗?‎ 四、我们来钻研 4‎ ‎(一)练习一 ‎1、长方形四个角分别剪去一个小正方形(如图所示),计算余下的面积,算式应是(C)。‎ ‎1‎ ‎1‎ ‎5‎ ‎10‎ A、10×5-1×1×4‎ B、10×7-1×1×4‎ C、(10+2)×(5+2)-1×1×4‎ ‎(二)练习二 下列图形是由边长分别为‎6cm和‎4cm的正方形拼成,求阴影部分面积。(单位:cm)‎ ‎① 先比较 ‎② 再计算 四、总结 我们在求组合图形的面积时,一般采用“割”、“补”等方法,同时在“割”、“补”的时候,还需要找到图形相应的数据。‎ 师:当我们碰到难以解决的新问题时,不要放弃,可以尝试运用我们已有的数学知识来思考解决。这就是我们数学中非常重要的转化思想。我们在今后的学习中,还会碰到无数的新问题,你们都可以试着运用“转化”的数学思想把它转化为自己所熟悉的问题,并解决它。‎ 4‎