- 912.50 KB
- 2022-02-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
5-1-3.植树问题(二)
教学目标
1.封闭与非封闭植树路线的讲解及生活运用。
2.掌握空心方阵和实心方阵的变化规律.
3.几何图形的设计与构造
知识点拨
一、植树问题分两种情况:
(一)不封闭的植树路线.
① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.
全长、棵数、株距之间的关系就为:棵数段数全长株距
全长株距(棵数)
株距全长(棵数)
② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.
全长、棵数、株距之间的关系就为:全长株距棵数;
棵数段数全长株距;
株距全长棵数.
③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵.
全长、棵数、株距之间的关系就为:棵数段数全长株距.
株距全长(棵数).
全长株距(棵数+1)
(二)封闭的植树路线.
在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.
全长、棵数、株距之间的关系就为:棵数段数周长株距.
二、解植树问题的三要素
(1)总路线长(2)间距(棵距)长(3)棵数,
只要知道这三个要素中任意两个要素,就可以求出第三个.
三、方阵问题
(1)明确空心方阵和实心方阵的概念及区别.
(2)每边的个数=总数÷”;
(3)每向里一层每边棋子数减少;
(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
例题精讲
模块一、封闭图形的植树问题
【例 1】 小强家附近的公园里有一个圆形池塘,它的周长1500是米,每隔3米栽种一棵树.问:共需树苗多少株?
【巩固】 周叔叔家有一个长40米,宽30米的长方形鱼塘,他想沿塘每隔5米栽一棵柳树,需要栽多少棵柳树?
【例 2】 在一个长345米、宽240米的长方形草坪四周等距离地栽一些松树,要求四个顶点和每边中点都正好栽一棵松树,则最少要买松树苗 棵。
【例 3】 公园内有一个圆形花坛,绕着它走一圈是120米.如果沿着这一圈每隔6米栽一棵丁香花,再在每相邻的两株丁香花之间等距离地栽2株月季花,可栽丁香花多少株?可栽月季花多少株?两株相邻的丁香花之间的2株月季花相距多少米?
【巩固】 一个圆形花坛,周长是180米.每隔6米种一棵芍药花,每相邻的两棵芍药花之间均匀地栽两棵月季花.问可栽多少棵芍药?多少棵月季?两棵月季之间的株距是多少米?
【巩固】 在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.
【例 4】
大雪后的一天,小明和爸爸共同步测一个圆形花圃的周长.他俩的起点和走的方向完全相同,小明的平均步长是54厘米,爸爸的平均步长是72厘米,由于两人的脚印有重合,并且他们走了一圈后都回到起点,这时雪地上只留下60个脚印,这个花圃的周长是多少厘米?
【巩固】 园林工人要在周长300米的圆形花坛边等距离地栽上树.他们先沿着花坛的边每隔3米挖一个坑,当挖完30个坑时,突然接到通知:改为每隔5米栽一颗树.这样,他们还要挖多少个坑才能完成任务?
【例 1】 一个街心花园如右图所示.它由四个大小相等的等边三角形组成.已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花.问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?
【例 2】 正方形操场四周栽了一圈树,四个角上都栽了树,每两棵树相隔5米.甲、乙从一个角上同时出发,向不同的方向走去,甲的速度是乙的2倍,乙在拐了一个弯之后的第5棵树与甲相遇(把角上的树看作第一棵树),操场四周栽了多少棵树?
模块二、方阵问题
【例 3】 在一次运动会开幕式上,有一大一小两个方阵合并变换成一个行列的方阵,求原来两个方阵各有多少人?
【例 4】 小华观看团体操表演,他看到表演队伍中的一个方阵变换成一个正三角形实心队列,他估计队伍中人数大概在至人之间,你能告诉他到底有多少人吗?
【例 5】 同学们做操,小林站在左起第列,右起第列;从前数前面有个同学,从后数后面有个同学.每行每列的人数同样多,做操的同学一共有多少人?
【巩固】 一群小猴排成整齐的队伍做操,长颈鹿站在队伍旁边,一下子看到了他的好朋友金丝猴.长颈鹿数了数,金丝猴的左边有只猴,右边也有只猴,前面有只猴,后面也有只猴.小朋友,你能算出有多少只猴子在做操吗?
【巩固】 小朋友们做广播体操,小明恰好站在队列的正中心,此时无论是从前往后或者从后往前数他都排在第5个,无论是从左往右或者是从右往左数他都排在第6个,则这个队列中一共有________位小朋友.
【例 1】 希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图1中实线所示,从第1行第1列开始,按照编号从小到大的顺序排成一个方阵。小明的编号是28,他排在第3行第4列,则运动员共有 人。
【例 2】 四年级一班同学参加了广播操比赛,排成每行人,每列人的方阵,问方阵中共有多少学生?如果去掉一行一列.还剩多少同学?
【巩固】 名同学排成一个方阵,后来又减去一行一列,问减少了多少人?
【巩固】 军训的学生进行队列表演,排成了一个行列的正方形队列,如果去掉一行一列,要去掉多少人?
【例 1】 学生进行队列表演,排成了一个正方形队列,如果去掉一行一列,要去掉人,问这个方阵共有多少人?
【巩固】 学生进行队列表演,排成了一个正方形队列,如果去掉一行一列,要去掉人,问这个方阵共有多少人?
【例 2】 二年级舞蹈队为全校做健美操表演,组成一个正方形队列,后来由于表演的需要,又增加一行一列,增加的人数正好是人,那么原来准备参加健美操表演的有多少人?
【巩固】 某部队战士排成方阵行军,另一支队伍共人加入他们的方阵,正好使横竖各增加一排,现共有多少战士?
【例 3】 育新小学召开秋季运动会,准备在正方形的操场周围插上彩旗.如果4个角上都要插上一面彩旗,要使每边有7面彩旗,那么一共要准备多少面彩旗才行?
【例 4】 某校五年级学生排成一个方阵,最外一层的人数为60人.问方阵外层每边有多少人?这个方阵共有五年级学生多少人?
【巩固】 明在一个正方形的棋盘里摆棋子,他先把最外层摆满,用了个棋子,求最外层每边有多少棋子?如果他要把整个棋盘摆满,还需要多少棋子?
【巩固】 校三年级学生排成一个方阵,最外一层的人数为人,问方阵外层每边有多少人?这个方阵共有三年级学生多少人?
【巩固】 三年级学生排成一个方阵进行体操表演,最外一层的人数为人,问方阵外层每边有多少人?这个方阵共有三年级学生多少人?
【例 1】 新学期开始,手持鲜花的少先队员在一辆彩车四周围成了每边两层的方阵,最外面一层每边人,彩车周围的少先队员有多少人?
【巩固】 节日来临,同学们用盆花在操场上摆了一个空心花坛,最外层的一层每边摆了盆花,一共层,一共用去多少盆花?
【巩固】 晓晓爱好围棋,他用棋子在棋盘上摆了一个二层空心方阵,外层每边有14个棋子,你知道他一共用了多少个棋子吗?
【巩固】 晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋子多少个?
【例 2】 在一次团体操表演中,有一个空心方阵最外层有人,最内层有人,参加团体操表演的共多少人?
【例 3】 个棋子摆成一个三层空心方阵,最内层每边有多少棋子?
【巩固】 将一个每边枚棋子的实心方阵变成一个四层的空心方阵,此空心方阵的最外层每边有多少棋子?
【例 1】 一些棋子被摆成了一个四层的空心方阵(右图是一个四层空心方阵的示意图).后来小林又添入28个棋子,这些棋子恰好变成了一个五层的空心方阵(不能移动原来的棋子),那么最开始最少有 个棋子.
【例 2】 同学们用盆花排出一个两层空心方阵,后来又决定在外面再增加一层成为三层方阵,还需多少盆花?
【例 3】 有一群学生排成三层空心方阵,多人,如空心部分增加两层,又少人,问有学生多少人?
【巩固】 为了准备学校的集体舞比赛,四年级的学生在排队形.如果排成3层空心的方阵则多10人,如果在中间空心的部分接着增加一层又少6人.问一共有多少个学生参加排练呢?
【巩固】 一队战士排成三层空心方阵多出人,如果空心部分再加一层又少人,这队战士共有多少人?如果他们改成实心方阵,每边应有多少人?
模块三、植树中的智巧趣题
【例 1】 今有10盆花要在平地上摆成5行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.
【例 2】 今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.
【例 3】 今有9盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.
【例 4】 今有10盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.
【例 5】 今有20盆花要在平地上摆成18行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.
【例 6】 今有20盆花要在平地上摆成20行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.
相关文档
- 小学数学精讲教案6_2_6 溶液浓度问2022-02-105页
- 小学数学精讲教案4_2_4 图形的分割2022-02-105页
- 小学数学精讲教案7_8_3 几何计数(三2022-02-1010页
- 小学数学精讲教案4_5_2 长方体与正2022-02-1025页
- 小学数学精讲教案1_1_1_1 小数四则2022-02-105页
- 小学数学精讲教案7_7_5 容斥原理之2022-02-105页
- 小学数学精讲教案5_3_1 质数与合数2022-02-106页
- 小学数学精讲教案6_3_4 工程问题(二2022-02-108页
- 小学数学精讲教案5_2_5 整除与分类2022-02-102页
- 小学数学精讲教案8_6 操作找规律 2022-02-109页