• 620.50 KB
  • 2022-02-12 发布

小学数学精讲教案3_2_9 接送问题 学生版

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
接送问题 教学目标 ‎1、准确画出接送问题的过程图——标准:每个量在相同时间所走的路程要分清 ‎2、理解运动过程,抓住变化规律 ‎3、运用行程中的比例关系进行解题 知识精讲 一、 校车问题——行走过程描述 队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。‎ 二、常见接送问题类型 根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:‎ ‎(1)车速不变-班速不变-班数2个(最常见) (2)车速不变-班速不变-班数多个 (3)车速不变-班速变-班数2个 (4)车速变-班速不变-班数2个 三、标准解法:‎ 画图+列3个式子 ‎1、总时间=一个队伍坐车的时间+这个队伍步行的时间;‎ ‎2、班车走的总路程;‎ ‎3、一个队伍步行的时间=班车同时出发后回来接它的时间。‎ 模块一、汽车接送问题——接一个人 【例 1】 某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?‎ 【巩固】 张工程师每天早上点准时被司机从家接到厂里。一天,张工程师早上点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前分钟。这天,张工程师还是早上点出门,但分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前 分钟到厂。‎ 【例 1】 李经理的司机每天早上7点30分到达李经理家接他去公司。有一天李经理7点从家里出发去公司,路上遇到从公司按时来接他的车,再乘车去公司,结果比平常早到5分钟。则李经理乘车的速度是步行速度的 倍。(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)‎ 模块二、汽车接送问题——接两个人或多人 ‎(一)、车速不变、人速不变 【例 2】 ‎(难度级别 ※※※)A、B两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以装载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为‎32千米,士兵行军速度为‎8千米/小时,卡车行驶速度为‎40千米每小时,求两营士兵到达目的地一共要多少时间?‎ 【巩固】 甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是千米/小时,学校有一辆汽车,它的速度是每小时千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距千米,那么各个班的步行距离是多少?‎ 【例 3】 ‎(难度级别 ‎ ‎※※)甲、乙、丙三个班的学生一起去郊外活动,他们租了一辆大巴,但大巴只够一个班的学生坐,于是他们计划先让甲班的学生步行,乙丙两班的学生步行,甲班学生搭乘大巴一段路后,下车步行,然后大巴车回头去接乙班学生,并追赶上步行的甲班学生,再回头载上丙班学生后一直驶到终点,此时甲、乙两班也恰好赶到终点,已知学生步行的速度为‎5千米/小时,大巴车的行驶速度为‎55千米/小时,出发地到终点之间的距离为‎8千米,求这些学生到达终点一共所花的时间.‎ 【例 1】 海淀区劳动技术学校有名学生到离学校千米的郊区参加采摘活动,学校只有一辆限乘人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时千米,汽车行驶的速度是每小时千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?‎ 【例 2】 甲、乙两班学生到离校‎39千米的博物馆参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达博物馆,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去博物馆,汽车则从某地立即返回去接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的10倍,那么汽车应在距博物馆多少千米处返回接乙班学生,才能使两班同时到达博物馆?‎ 【例 3】 甲、乙两班学生到离校‎24千米 的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生.为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则从某地立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,汽车速度是他们步行速度的7倍,那么汽车应在距飞机场多少千米处返回接乙班学生,才能使两班同时到达飞机场?‎ 【例 1】 ‎、两地相距千米.有一支游行队伍从出发,向匀速前进;当游行队伍队尾离开时,甲、乙两人分别从、两地同时出发.乙向步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第次追上队头时恰与乙相遇在距地千米处;当甲第次追上队头时,甲恰好第一次到达地,那么此时乙距地还有__________千米.‎ 【例 2】 ‎、两地相距千米.有一支游行队伍从出发,向匀速前进;当游行队伍队尾离开时,甲、乙两人分别从、两地同时出发.乙向步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距地‎5.6千米处;当甲第7次追上队头时,甲恰好第一次到达地,那么此时乙距地还有______千米.‎ ‎(二)车速不变、人速变 【例 3】 ‎(难度级别 ※※)甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离之比是多少千米?‎ ‎(三)、车速变、人速不变 【例 1】 甲、乙两班同学到‎42千米外的少年宫参加活动,但只有一辆汽车,且一次只能坐一个班的同学,已知学生步行速度相同为千米/小时,汽车载人速度是千米/小时,空车速度是千米/小时.如果要使两班同学同时到达,且到达时间最短,那么这个最短时间是多少?‎ 【例 2】 有两个班的小学生要到少年宫参加活动,但只有一辆车接送,第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,学生步行速度为每小时4公里,载学生时车速每小时40公里,空车时车速为每小时50公里.问:要使两班学生同时到达少年宫,第一班学生要步行全程的几分之几?‎ 【例 3】 某学校学生计划乘坐旅行社的大巴前往郊外游玩,按照计划,旅行社的大巴准时从车站出发后能在约定时间到达学校,搭载满学生在预定时间到达目的地,已知学校的位置在车站和目的地之间,大巴车空载的时候的速度为千米/小时,满载的时候速度为千米/小时,由于某种原因大巴车晚出发了分钟,学生在约定时间没有等到大巴车的情况下,步行前往目的地,在途中搭载上赶上来的大巴车,最后比预定时间晚了分钟到达目的地,求学生们的步行速度.‎ ‎(四)、车速变、人速变 【例 4】 ‎(台湾小学数学竞赛选拔赛决赛)甲、乙二人由地同时出发朝向地前进,、两地之距离为千米.甲步行之速度为每小时千米,乙步行之速度为每小时千米.现有一辆自行车,甲骑车速度为每小时千米,乙骑车的速度为每小时千米.出发时由甲先骑车,乙步行,为了要使两人都尽快抵达目的地,骑自行车在前面的人可以将自行车留置在途中供后面的人继续骑.请问他们从出发到最后一人抵达目的地最少需要多少小时?‎ 模块三、汽车接送问题——借车赶路问题 【例 1】 ‎(难度级别 ※※※※※)三个人同时前往相距‎30千米的甲地,已知三人行走的速度相同,都是‎5千米每小时;现在还有一辆自行车,但只能一个人骑,已知骑车的速度为‎10千米每小时。现先让其中一人先骑车,到中途某地后放车放下,继续前进;第二个人到达后骑上再行驶一段后有放下让最后那人骑行,自己继续前进,这样三人同时到达甲地。问,三人花的时间各为多少?‎ 【例 2】 ‎(全国“华罗庚金杯”少年数学邀请赛)、两地相距120千米,已知人的步行速度是每小时‎5千米,摩托车的行驶速度是每小时50千米,摩托车后座可带一人.问:有三人并配备一辆摩托车从地到地最少需要多少小时?(保留—位小数)‎ 【例 3】 兄弟两人骑马进城,全程‎51千米。马每时行‎12千米,但只能由一个人骑。哥哥每时步行‎5千米,弟弟每时步行‎4千米。两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行。而步行者到达此地,再上马前进。若他们早晨6点动身,则何时能同时到达城里?‎ 【巩固】 ‎(难度级别 ※)甲乙两人同时从学校出发去距离‎33千米外的公园,甲步行的速度是每小时4千米,乙步行的速度是每小时3千米。他们有一辆自行车,它的速度是每小时5千米,这辆车只能载一个人,所以先让其中一人先骑车到中途,然后把车放下之后继续前进,等另一个人赶到放车的位置后再骑车赶去,这样使两人同时到达公园。那么放车的位置距出发点多少千米?‎ 【巩固】 ‎、两人同时自甲地出发去乙地,、步行的速度分别为米/分、米/分,两人骑车的速度都是米/分,先骑车到途中某地下车把车放下,立即步行前进;走到车处,立即骑车前进,当超过一段路程后,把车放下,立即步行前进,两人如此继续交替用车,最后两人同时到达乙地,那么从甲地到乙地的平均速度是 米/分.‎ 【例 1】 A、B两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时‎5千米,乙和丙每小时‎4千米,那么三人需要多少小时可以同时到达?‎ 【例 2】 设有甲、乙、丙三人,他们步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的倍.现甲从地去地,乙、丙从地去地,双方同时出发.出发时,甲、乙为步行,丙骑车.途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己重又步行,三人仍按各自原有方向继续前进.问:三人之中谁最先达到自己的目的地?谁最后到达目的地?‎ 模块四、汽车接送问题——策略问题 【例 3】 两辆同一型号的汽车从同一地点同时出发,沿同一方向同速直线前进,每车最多能带20桶汽油(连同油箱内的油)。每桶汽油可以使一辆汽车前进‎60千米,两车都必须返回出发地点,两辆车均可借对方的油,为了使一辆车尽可能地远离出发点,那么这辆车最远可达到离出发点多少千米远的地方?‎ 【巩固】 ‎(难度等级 ※※※※)在一个沙漠地带,汽车每天行驶‎200千米,每辆汽车载运可行驶24天的汽油.现有甲、乙两辆汽车同时从某地出发,并在完成任务后,沿原路返回.为了让甲车尽可能开出更远的距离,乙车在行驶一段路程后,仅留下自己返回出发地的汽油,将其他的油给甲车.求甲车所能开行的最远距离.‎ 【例 1】 一个旅游者于是10时15分从旅游基地乘小艇出发,务必在不迟于当日13时返回。已知河水速度为‎1.4千米/小时,小艇在静水中的速度为‎3千米/小时,如果旅游者每过30分钟就休息15分钟,不靠岸,只能在某次休息后才返回,那么他从旅游基地出发乘艇走过的最大距离是____千米。‎ 【例 2】 某沙漠通讯班接到紧急命令,让他们火速将一份情报送过沙漠。现在已知沙漠通讯班成员只有靠步行穿过沙漠,每个人步行穿过沙漠的时间均为12天,而每个人最多只能带8天的食物,请问,在假定每个人饭量大小相同,且所能带的食物相同的情况下,沙漠通讯班能否完成任务?如果能,那么最少需要几人才能将情报送过沙漠,怎么送?‎ 【例 3】 甲、乙两人要到沙漠中探险,他们每天向沙漠深处走‎20千米,已知每人最多可携带一个人24天的食物和水.⑴ 如果不准将部分食物存放在途中,问其中一人最远可以深人沙漠多少千米(当然要求二人最后返回出发点)?⑵ 如果可以将部分食物存放于途中以备返回时取用,情况又怎样呢?‎ 【例 1】 有5位探险家计划横穿沙漠.他们每人驾驶一辆吉普车,每辆车最多能携带可供一辆车行驶‎312千米的汽油.显然,5个人不可能共同穿越‎500千米以上的沙漠.于是,他们计划在保证其余车完全返回出发点的前提下,让一辆车穿越沙漠,当然实现这一计划需要几辆车相互借用汽油.问:穿越沙漠的那辆车最多能穿越多宽的沙漠?‎ 【例 2】 ‎(小学数学奥林匹克决赛试题)科学考察队的一辆越野车需要穿越一片全程大于千米的沙漠,但这辆车每次装满汽油最多只能驶千米,队长想出一个方法,在沙漠中设一个储油点,越野车装满油从起点出发,到储油点时从车中取出部分油放进储油点,然后返回出发点,加满油后再开往,到储油点时取出储存的油放在车上,从出发点到达终点.用队长想出的方法,越野车不用其他车帮助就完成了任务,那么,这辆越野车穿越这片沙漠的最大行程是 千米.‎ 【例 3】 ‎ (北大附中“资优博雅杯”数学竞赛)有一只小猴子在深山中发现了一片野香蕉园,它一共摘了根香蕉,然后要走米才能到家,如果它每次最多只能背根香蕉,并且它每走米就要吃掉一根香蕉,那么,它最多可以把 根香蕉带回家?‎