- 1.22 MB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2008年全国中考数学压轴题精选精析(三)
21(08江西南昌24题)如图,抛物线相交于两点.
(1)求值;
(2)设与轴分别交于两点(点在点的左边),与轴分别交于两点(点在点的左边),观察四点的坐标,写出一条正确的结论,并通过计算说明;
y
x
P
A
O
B
B
(3)设两点的横坐标分别记为,若在轴上有一动点,且,过作一条垂直于轴的直线,与两条抛物线分别交于C,D两点,试问当为何值时,线段CD有最大值?其最大值为多少?
(08江西南昌24题解析)解:(1)点在抛物线上,
, 2分
解得. 3分
(2)由(1)知,抛物线,. 5分
y
x
P
A
O
B
B
M
E
N
F
当时,解得,.
点在点的左边,,. 6分
当时,解得,.
点在点的左边,,. 7分
,,
点与点对称,点与点对称. 8分
y
x
P
A
O
B
D
Q
C
(3).
抛物线开口向下,抛物线开口向上. 9分
根据题意,得
. 11分
,当时,有最大值. 12分
说明:第(2)问中,结论写成“,四点横坐标的代数和为0”或“”均得1分.
22(08江西南昌25题)如图1,正方形和正三角形的边长都为1,点分别在线段上滑动,设点到的距离为,到的距离为,记为(当点分别与重合时,记).
(1)当时(如图2所示),求的值(结果保留根号);
(2)当为何值时,点落在对角形上?请说出你的理由,并求出此时的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
0.03
0
0.29
0.29
0.13
0.03
(4)若将“点分别在线段上滑动”改为“点分别在正方形边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点运动所形成的大致图形.
A
H
F
D
G
C
B
E
图1
图2
B(E)
A(F)
D
C
G
H
A
D
C
B
图3
H
H
D
A
C
B
图4
(参考数据:.)
(08江西南昌25题解析)解:(1)过作于交于,于.
,,
,. 2分
,. 3分
B(E)
A(F)
D
C
G
K
M
N
H
(2)当时,点在对角线上,其理由是: 4分
过作交于,
过作交于.
平分,,.
,,.
,.
,.
A
D
C
B
H
E
I
P
Q
G
F
J
即时,点落在对角线上. 6分
(以下给出两种求的解法)
方法一:,.
在中,,
. 7分
. 8分
方法二:当点在对角线上时,有
, 7分
解得
. 8分
(3)
0.13
0.03
0
0.03
0.13
0.29
0.50
0.50
0.29
0.13
0.03
0
0.03
0.13
10分
(4)由点所得到的大致图形如图所示:
H
A
C
D
B
12分
说明:1.第(2)问回答正确的得1分,证明正确的得2分,求出的值各得1分;
2.第(3)问表格数据,每填对其中4空得1分;
3.第(4)问图形画得大致正确的得2分,只画出图形一部分的得1分.
23(08山东滨州23题)(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:①如图2,点M、N在反比例函数y=的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F. 试应用(1)中得到的结论证明:MN∥EF.
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与E是否平行.
(08山东滨州23题解析)(1)证明:分别过点C、D作
垂足为G、H,则
(2)①证明:连结MF,NE
设点M的坐标为,点N的坐标为,
∵点M,N在反比例函数的图象上,
∴,
由(1)中的结论可知:MN∥EF。
②MN∥EF。
24(08山东滨州24题)(本题满分12分)
如图(1),已知在中,AB=AC=10,AD为底边BC上的高,且AD=6。将沿箭头所示的方向平移,得到。如图(2),交AB于E,分别交AB、AD于G、F。以为直径作,设的长为x,的面积为y。
(1)求y与x之间的函数关系式及自变量x的取值范围;
(2)连结EF,求EF与相切时x的值;
(3)设四边形的面积为S,试求S关于x的函数表达式,并求x为何值时,S的值最大,最大值是多少?
(08山东滨州24题解析)解:
25(08山东青岛24题)(本小题满分12分)
已知:如图①,在中,,,,点由出发沿方向向点匀速运动,速度为1cm/s;点由出发沿方向向点匀速运动,速度为2cm/s;连接.若设运动的时间为(),解答下列问题:
(1)当为何值时,?
(2)设的面积为(),求与之间的函数关系式;
(3)是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;
A
Q
C
P
B
图①
A
Q
C
P
B
图②
(4)如图②,连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
(08山东青岛24题解析)(本小题满分12分)
图①
B
A
Q
P
C
H
解:(1)在Rt△ABC中,,
由题意知:AP = 5-t,AQ = 2t,
若PQ∥BC,则△APQ ∽△ABC,
∴,
∴,
∴. 3′
(2)过点P作PH⊥AC于H.
∵△APH ∽△ABC,
∴,
∴,
∴,
∴. 6′
(3)若PQ把△ABC周长平分,
则AP+AQ=BP+BC+CQ.
∴,
解得:.
若PQ把△ABC面积平分,
则, 即-+3t=3.
∵ t=1代入上面方程不成立,
∴不存在这一时刻t,使线段PQ把Rt△ACB的周长和面积同时平分. 9′
(4)过点P作PM⊥AC于M,PN⊥BC于N,
P ′
B
A
Q
P
C
图②
M
N
若四边形PQP ′ C是菱形,那么PQ=PC.
∵PM⊥AC于M,
∴QM=CM.
∵PN⊥BC于N,易知△PBN∽△ABC.
∴, ∴,
∴,
∴,
∴,
解得:.
∴当时,四边形PQP ′ C 是菱形.
此时, ,
在Rt△PMC中,,
∴菱形PQP ′ C边长为. 12′
26(08山东泰安26题)(本小题满分10分)
在等边中,点为上一点,连结,直线与分别相交于点,且.
A
B
C
F
D
P
图3
A
B
C
D
P
图2
E
l
l
E
F
A
B
C
D
P
图1
l
E
F
(第26题)
(1)如图1,写出图中所有与相似的三角形,并选择其中一对给予证明;
(2)若直线向右平移到图2、图3的位置时(其它条件不变),(1)中的结论是否仍然成立?若成立,请写出来(不证明),若不成立,请说明理由;
(3)探究:如图1,当满足什么条件时(其它条件不变),?请写出探究结果,并说明理由.
(说明:结论中不得含有未标识的字母)
(08山东泰安26题解析)(本小题满分10分)
(1)与 2分
以为例,证明如下:
4分
(2)均成立,均为, 6分
(3)平分时,. 7分
证明:平分
8分
又
10分
注:所有其它解法均酌情赋分.
x
O
y
A
B
27(08山东威海24题)(11分) 如图,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点,
以点A,B,M,N为顶点的四边形是平行四边形,
试求直线MN的函数表达式.
(3)选做题:在平面直角坐标系中,点P的坐标
为(5,0),点Q的坐标为(0,3),把线段PQ向右平
移4个单位,然后再向上平移2个单位,得到线段P1Q1,
则点P1的坐标为 ,点Q1的坐标为 .
(08山东威海24题解析)(本小题满分11分)
解:(1)由题意可知,.
x
O
y
A
B
M1
N1
M2
N2
解,得 m=3. ………………………………3分
∴ A(3,4),B(6,2);
∴ k=4×3=12. ……………………………4分
(2)存在两种情况,如图:
①当M点在x轴的正半轴上,N点在y轴的正半轴
上时,设M1点坐标为(x1,0),N1点坐标为(0,y1).
∵ 四边形AN1M1B为平行四边形,
∴ 线段N1M1可看作由线段AB向左平移3个单位,
再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).
由(1)知A点坐标为(3,4),B点坐标为(6,2),
∴ N1点坐标为(0,4-2),即N1(0,2); ………………………………5分
M1点坐标为(6-3,0),即M1(3,0). ………………………………6分
设直线M1N1的函数表达式为,把x=3,y=0代入,解得.
∴ 直线M1N1的函数表达式为. ……………………………………8分
②当M点在x轴的负半轴上,N点在y轴的负半轴上时,设M2点坐标为(x2,0),N2点坐标为(0,y2).
∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,
∴ N1M1∥M2N2,N1M1=M2N2.
∴ 线段M2N2与线段N1M1关于原点O成中心对称.
∴ M2点坐标为(-3,0),N2点坐标为(0,-2). ………………………9分
设直线M2N2的函数表达式为,把x=-3,y=0代入,解得,
∴ 直线M2N2的函数表达式为.
所以,直线MN的函数表达式为或. ………………11分
(3)选做题:(9,2),(4,5). ………………………………………………2分
28(08山东威海25题)(12分) 如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.
C
D
A
B
E
F
N
M
(1)求梯形ABCD的面积;
(2)求四边形MEFN面积的最大值.
(3)试判断四边形MEFN能否为正方形,若能,
求出正方形MEFN的面积;若不能,请说明理由.
(08山东威海25题解析)(本小题满分12分)
解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H. ……………1分
∵ AB∥CD,
∴ DG=CH,DG∥CH.
∴ 四边形DGHC为矩形,GH=CD=1.
C
D
A
B
E
F
N
M
G
H
∵ DG=CH,AD=BC,∠AGD=∠BHC=90°,
∴ △AGD≌△BHC(HL).
∴ AG=BH==3. ………2分
∵ 在Rt△AGD中,AG=3,AD=5,
∴ DG=4.
∴ . ………………………………………………3分
C
D
A
B
E
F
N
M
G
H
(2)∵ MN∥AB,ME⊥AB,NF⊥AB,
∴ ME=NF,ME∥NF.
∴ 四边形MEFN为矩形.
∵ AB∥CD,AD=BC,
∴ ∠A=∠B.
∵ ME=NF,∠MEA=∠NFB=90°,
∴ △MEA≌△NFB(AAS).
∴ AE=BF. ……………………4分
设AE=x,则EF=7-2x. ……………5分
∵ ∠A=∠A,∠MEA=∠DGA=90°,
∴ △MEA∽△DGA.
∴ .
∴ ME=. …………………………………………………………6分
∴ . ……………………8分
当x=时,ME=<4,∴四边形MEFN面积的最大值为.……………9分
(3)能. ……………………………………………………………………10分
由(2)可知,设AE=x,则EF=7-2x,ME=.
若四边形MEFN为正方形,则ME=EF.
即 7-2x.解,得 . ……………………………………………11分
∴ EF=<4.
∴ 四边形MEFN能为正方形,其面积为. ………12分
29(08山东烟台25题)(本题满分14分)
如图,抛物线交轴于A、B两点,交轴于M点.抛物线向右平移2个单位后得到抛物线,交轴于C、D两点.
(1)求抛物线对应的函数表达式;
(2)抛物线或在轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;
(3)若点P是抛物线上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线上,请说明理由.
30(08山东枣庄25题)(本题满分10分)
把一副三角板如图甲放置,其中,,,斜边,.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点,与D1E1相交于点F.
(1)求的度数;
(2)求线段AD1的长;
B
(乙)
A
E11
C
D11
O
F
(甲)
A
C
E
D
B
(3)若把三角形D1CE1绕着点顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.
5
4
1
2
3
(08山东枣庄25题解析)25.(本题满分10分)
解:(1)如图所示,,,
∴. ………………………………1分
又,
∴. ………3分
(2),∴∠D1FO=60°.
,∴. 4分
又,,∴.
,∴. 5分
又,∴.
在中,. 6分
(3)点在内部. 7分
理由如下:设(或延长线)交于点P,则.
在中,, ………… 9分
,即,∴点在内部. ……………10分