• 207.50 KB
  • 2021-05-10 发布

2017山东数学中考真题分类汇编解直角三角形

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2017山东省各地市中考真题分类汇编--解直角三角形 一、 选择题:‎ ‎1、(聊城,2.(3分))在Rt△ABC中,cosA=,那么sinA的值是(  )‎ A. B. C. D.‎ ‎2、(日照,4.)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为(  )‎ A. B. C. D.‎ ‎3、(烟台12.(3分))如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)(  )‎ ‎(第12题图)‎ A.34.14米 B.34.1米 C.35.7米 D.35.74米 ‎4、(淄博12.)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为  (  )‎ A. B. C. D.[来%源:&~中*^教网]‎ 二、 填空题;‎ ‎1、(东营,16.)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是   尺.‎ ‎2、(东营,17.)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为   米.‎ ‎3、(临沂,18.(3分))在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是   .‎ 一、 解答题 ‎1、(菏泽、18.)如图,某小区①号楼与号楼隔河相望,李明家住在①号楼,他很想知道号楼的高度,于是他做了一些测量.他先在点测得点的仰角为60°,然后到42米高的楼顶处,测得点的仰角为30°,请你帮李明计算号楼的高度.‎ ‎2、(德州,21.)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B=30°,∠C=45°.‎ ‎(1)求B,C之间的距离;(保留根号)‎ ‎(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)‎ ‎3、(聊城,21.(8分))‎ 耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的A,B两点的俯角分别为17.9°,22°,并测得塔底点C到点B的距离为142米(A、B、C在同一直线上,如图2),求运河两岸上的A、B两点的距离(精确到1米).‎ ‎(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)‎ ‎4、(临沂,22.(7分))如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.‎ ‎5、(青岛,19.)(本小题满分6分)‎ ‎ 如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数) ‎ ‎ (参考数据:)‎ ‎6、(威海,22.)图1是太阳能热水器装置的示意图,利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:‎ 如图2,AB⊥BC,垂足为点B,EA⊥AB,垂足为点A,CD∥AB,CD=10cm,DE=120cm,FG⊥DE,垂足为点G.‎ ‎(1)若∠θ=37°50′,则AB的长约为 83.2 cm;‎ ‎(参考数据:sin37°50′≈0.61,cos37°50′≈0.79,tan37°50′≈0.78)‎ ‎(2)若FG=30cm,∠θ=60°,求CF的长.‎ ‎7、(潍坊,20.)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:≈1.73)‎