- 220.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
章节
第九章
课题
图形的平移与旋转
课型
复习课
教法
讲练结合
教学目标(知识、能力、教育)
1.了解平移和旋转的概念。理解平移、旋转的基本性质,并能作出简单的平面图形平移、旋转后的图形.
2.探索图形之间的变换关系,认识和欣赏平移、旋转在现实牛活中的多用.
3.能够运用平移、旋转、轴对称及其组合进行图案设计.
教学重点
理解平移、旋转的基本性质,并能作出简单的平面图形平移、旋转后的图形.
教学难点
能够运用平移、旋转、轴对称及其组合进行图案设计.
教学媒体
学案
教学过程
一:【课前预习】
(一):【知识梳理】
1.图形的平移
(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.
注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形
在同一平面内的变换.
②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移 的依据.
③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.
(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.
②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.
(3)简单的平移作图
平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离.
2. 图形的旋转
(1)旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。理解旋转这一概念应注意以下两点:①旋转和平移一样是图形的一种基本变换;②图形旋转的决定因素是旋转中心和旋转的角度.
(2)旋转的基本性质:图形中每一个点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段、对应角都相等,图形的形状、大小都不发生变化.
(3)简单图形的旋转作图
两种情况:①给出绕着旋转的定点,旋转方向和旋转角的大小;
②给出定点和图形的一个特殊点旋转后的对应点.
作图步骤:①作出图形的几个关键点旋转后的对应点;
②顺次连接各点得到旋转后的图形.
(4)图案设计:图案的设计是由基本图形经过适当的平移、旋转、轴对称等图形的变换而得到的。其中中心对称是旋转变换的一种特例。
(二):【课前练习】
1.如图,四边形ABCD平移后得到四边形 EFGH,
填空(1)CD=______, (2)∠ F=______
(3)HE= ,(4)∠D=_____,
(5)DH=_________
2.如图,若线段CD是由线段AB平移而得到的,
则线段CD、AB关系是__________.
3.将长度为3cm的线段向上平移20cm,所得线段的长度是( )
A.3cm B.23cm C.20cm D.17cm
4.关于平移的说法,下列正确的是( )
A.经过平移对应线段相等; B.经过平移对应角可能会改变
C.经过平移对应点所连的线段不相等; D.经过平移图形会改变
5.在“党”“在”“我”“心”“中”五个汉字中,旋转180o后不变的字是_______
在字母“X”、“V”、“Z”、“H”中绕某点旋转(旋转度数不超过180)后不能与原图形重合的是____
二:【经典考题剖析】
1.下列说法正确的是( )
A.由平移得到的两个图形的对应点连线长度不一定相等
B.我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方
向的平移”
C.小明第一次乘观光电梯,随着电梯向上升,他高兴地对同伴说:“太棒了,我现在比大楼还高呢,我长高了!”
D.在图形平移过程中,图形上可能会有不动点
2.如图,已知△ABC,画出△ABC沿 PQ方向平移
2cm后的△A′B′C′.
3.如图⑴,两块完全重合的正方形纸片,如果上面的一块统正方形的中心O作0○~90o的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n的关系的图象大致是图⑵中的( )
(图1) (图2)
4.如图,在方格纸上,有两个形状、大小一样的三角形,请指出如何运用轴对称、平移、旋转这三种运动,将方格中的△ABC重合到△DEF上.
5.如图是跷跷板示意图,模板AB通过点O,且可以绕点O上下转动,如果∠OCA=90○,∠CAO= 25○,
(1)画出在空中划过的线;
(2)上下最多可以转动多少角度?
三:【课后训练】
1.将△ABC平移10cm,得∠EFG,如果∠ABC=52○ ,则∠EFG=_____.BF=_____.
2.平移不改变图形的________,只改变图形的位置。故此若将线段AB向右平移3cm,得到线段CD,如果AB=5㎝,则 CD=___________
3.下列关于旋转和平移的说法正确的是( )
A.旋转使图形的形状发生改变
B.由旋转得到的图形一定可以通过平移得到
C.平移与旋转的共同之处是改变图形的位置和大小
D.对应点到旋转中心距离相等
4.如图,正方形ABCD可以看成由三角形______旋转而成的,其旋转
中心为______点,旋转角度依次为________,________,________.
5.如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时
针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度为( )
A.3 B.3 C.5 D.4
6.△ABC是等腰直角三角形,如图,AB=AC,∠BAC=90°,
D是BC上一点,△ACD经过旋转到达△ABE的位置,则
其旋转角的度数为( )
A.90° B.120° C.60° D.45°
7.如图,先将方格纸中“猫头”分别向左平移6格、12格,然后分析所画三个图案的关系.
8.如图,已知∠AOB,要求把其往正东方向平移3cm,要求留画痕,写作法
.
9.已知边长为 1个单位的等边三角形ABC,
(1)将这个三角形绕它的顶点C按顺时针方向旋转30○ 作出这个图形;
(2)再将已知三角形分别按顺时针方向旋转60○、90○、120○,作出这些图形.
10.如图,在△ABC中,AB=AC,∠BAC=40°,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,请你用对称和旋转的知识回答下列问题:
(l)△ADE和△DFA关于直线AD对称吗?为什么?
(2)把△BDE绕点D顺时针旋转160○后能否与△CDF重合?为什么?
(3)把△BDE绕点D旋转多少度后,此时的△BDE和△CDF关于直线BC对称?
四:【课后小结】
布置作业
见学案
教后记