- 95.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第18课时 函数的综合应用
【课前展练】
1.油箱中存油20升,油从油箱中均匀流 出,流速为0.2升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是( )
A.Q=0.2t; B.Q=20-2t; C.t=0.2Q; D.t=20—0.2Q
2.幸福村办工厂,今年前五个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图所示,则该工厂对这种产品来说( )
A.1月至3月每月生产总量逐月增加,4,5两月每月生产总量逐月减小
B.l月至3月生产总量逐月增加,4、5两月生产总量与3月持平
C.l月至3月每月生产总量逐月增加,4、5两月均停止生产
D.l月至3月每月生产总量不变,4、5两月均停止生产
3.某商人将进货单价为8元的商品按每件10元出售,每天可销售100件,现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销价提高 .
4.为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后y与x成反比例如图所示.现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息填空:
⑴药物燃烧时,y关于x的函数关系式为_______,自变量x的取值范围是_________;
⑵药物燃烧后y关于x的函数关系式为___________
⑶当室内空气中每立方米的含药量为3毫克时消毒才有效,有效时间为 分钟
【考点梳理】
1.解决函数应用性问题的思路
面→点→线。首先要全面理解题意,迅速接受概念,此为“面”;透过长篇叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,建立函数模型,此为“线”。如此将应用性问题转化为纯数学问题。
2.解决函数应用性问题的步骤
(1)建模:它是解答应用题的关键步骤,就是在阅读材料,理解题意的基础上,把实际问题的本质抽象转化为数学问题。
3
(2)解模:即运用所学的知识和方法对函数模型进行分析、运用、,解答纯数学问题,最后检验所得的解,写出实际问题的结论。
(注意:①在求解过程和结果都必须符合实际问题的要求;②数量单位要统一。)
3.综合运用函数知识,把生活、生产、科技等方面的问题通过建立函数模型求解,涉及最值问题时,运用二次函数的性质,选取适当的变量,建立目标函数。求该目标函数的最值,但要注意:①变量的取值范围;②求最值时,宜用配方法。
n(日)
P(件)
0
1
10
31
【典型例题】
【例1】(孝感2009)五月份,某品牌衬衣正式上市销售,5月1日的销售量为10件,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销售量为P(件),销售日期为n(日),P与n之间的关系如图所示.
(1)写出P关于n的函数关系式P= (注明n的取值范围);
(2)经研究表明,该品牌衬衣的日销售量超过150件的时间为该品牌衬衣的流行期.请问:该品牌衬衣本月在市面的流行期是多少天?
(3)该品牌衬衣本月共销售了 件.
【例2】为提醒人们节约用水,及时修好漏水的水龙头,两名同学分别做了水龙头漏水实验,他们用于接水的量筒最大容量为100毫升.
实验一:小王同学在做水龙头漏水实验时,每隔10秒观察量筒中水的体积,记录的数据如下表(漏出的水量精确到1毫升):
时间t(秒)
10
20
30
40
50
60
70
漏出的水量V(毫升)
2
5
8
11
14
17
20
(1)在图1的坐标系中描出上表中数据对应的点;
(2)如果小王同学继续实验,请探求多少秒后量筒中的水会满而溢出(精确到1秒)?
(3)按此漏水速度,一小时会漏水 千克(精确到0.1千克).
3
实验二:小李同学根据自己的实验数据画出的图象如图2所示,为什么图象中会出现与横轴“平行”的
部分?
【例3】在一次数学活动课上,老师出了一道题:
(1)解方程x2-2x-3=0.
巡视后老师发现同学们解此题的方法有公式法、配方法和十字相乘法(分解因式法)。
接着,老师请大家用自己熟悉的方法解第二道题:
(2)解关于x的方程mx2+(m-3)x-3=0(m为常数,且m≠0).
老师继续巡视,及时观察、点拨大家.再接着,老师将第二道题变式为第三道题:
(3)已知关于x的函数y=mx2+(m-3)x-3(m为常数).
①求证:不论m为何值,此函数的图象恒过x轴、y轴上的两个定点(设x轴上的定点为A,y轴上的定点为C);
②若m≠0时,设此函数的图象与x轴的另一个交点为点B,当△ABC为锐角三角形时,求m的取值范围;当△ABC为钝角三角形时,观察图象,直接写出m的取值范围.
请你也用自己熟悉的方法解上述三道题.
3