• 1.06 MB
  • 2021-05-10 发布

广州市中考数学试卷及答案解析

  • 16页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
广东省广州市2017年中考数学真题试题 第一部分 选择题(共30分)‎ 一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.【‎ ‎1.如图1,数轴上两点表示的数互为相反数,则点表示的( )‎ A. -6 B.6 C. 0 D.无法确定 ‎【答案】B ‎【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.‎ 考点:相反数的定义 ‎2.如图2,将正方形中的阴影三角形绕点顺时针旋转90°后,得到图形为 ( )‎ ‎【答案】A 考点:旋转的特征 ‎3. 某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁)12,13,14,15,15,15.这组数据中的众数,平均数分别为( )21·cn·jy·com A.12,14 B. 12,15 C.15,14 D. 15,132·1·c·n·j·y ‎【答案】C ‎【解析】试题分析:15出现次数最多,有3次,所以,众数为15, =14.故选C.‎ 考点: 众数,中位数的求法 ‎4. 下列运算正确的是( )‎ A. B. C. D. ‎ ‎【答案】D 考点:代数式的运算 ‎ ‎5.关于的一元二次方程有两个不相等的实数根,则的取值范围是( )‎ A. B. C. D.‎ ‎【答案】A ‎【解析】试题分析:根的判别式为△=,解得:.故选答案A.‎ 考点:一元二次方程根的判别式的性质 ‎6. 如图3,是的内切圆,则点是的( )‎ A. 三条边的垂直平分线的交点 B.三角形平分线的交点 ‎ C. 三条中线的交点       D.三条高的交点 图3‎ ‎【答案】B ‎【解析】试题分析:内心到三角形三边距离相等,到角的两边距离相等的点在这个角的角平分线上,故选B。‎ 考点: 内心的定义 ‎7. 计算 ,结果是( )‎ A. B. C. D.‎ ‎【答案】A ‎【解析】试题分析:原式=.故选答案A.‎ 考点: 分式的乘法 ‎8.如图4,分别是的边上的点,,将四边形沿 翻折,得到,交于点,则的周长为 ( )21世纪教育网版权所有 A.6 B. 12 C. 18 D.24‎ ‎【答案】C 考点: 平行线的性质 ‎9.如图5,在中,在中,是直径,是弦,,垂足为,连接,则下列说法中正确的是( )21教育网 A. B. ‎ ‎ C. D. ‎ ‎【答案】D 考点: 垂径定理的应用 ‎10. ,函数与在同一直角坐标系中的大致图象可能是( )‎ ‎【答案】D ‎【解析】试题分析:如果>0,则反比例函数图象在第一、三象限,二次函数图象开口向下,排除A;二次函数图象与Y轴交点(0,)在y轴正半轴,排除B;如果<0,则反比例函数图象在第二、四象限,二次函数图象开口向上,排除C;故选D。‎ 考点: 二次函数与反比例函数的图像的判断.‎ 第二部分 非选择题(共120分)‎ 二、填空题:本大题共6小题 ,每小题3分,满分18分 ‎11.如图6,四边形中,,则___________.‎ ‎【答案】70°‎ ‎【解析】试题分析:两直线平行,同旁内角互补,可得:180°-110°=70°‎ 考点:平行线的性质 ‎12.分解因式:___________.‎ ‎【答案】‎ 考点:提公因式法和公式法进行因式分解.‎ ‎13.当 时,二次函数 有最小值______________.‎ ‎【答案】1 , 5‎ ‎【解析】试题分析:二次函数配方,得:,所以,当x=1时,y有最小值5.‎ 考点:利用二次函数配方求极值.‎ ‎14.如图7,中,,则 .‎ ‎【答案】17‎ ‎【解析】试题分析:因为,所以,AC=8,由勾股定理,得:AB=17.‎ 考点: 正切的定义.‎ ‎15.如图8,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线 .21cnjy.com ‎【答案】‎ 考点: 圆锥的底面周长与侧面展开图的弧长关系.‎ ‎16.如图9,平面直角坐标系中是原点,的顶点的坐标分别是,点把线段三等分,延长分别交于点,连接,则下列结论:【来源:21cnj*y.co*m】‎ ‎①是的中点;②与相似;③四边形的面积是;④;其中正确的结论是 .(填写所有正确结论的序号)【出处:21教育名师】‎ ‎【答案】①③‎ ‎【解析】试题分析:如图,分别过点A、B作 于点N, 轴于点M 在 中, ‎ ‎ 是线段AB的三等分点, ‎ ‎ ‎ ‎ ‎ ‎ 是OA的中点,故①正确.‎ ‎ ‎ ‎ 不是菱形. ‎ ‎ ‎ ‎ ‎ 故 和 不相似.则②错误;‎ ‎ 四边形 是梯形 ‎ ‎ 则③正确 ‎ ,故④错误.‎ 综上:①③正确.‎ 考点: 平行四边形和相似三角形的综合运用 三、解答题 (本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤.) ‎ ‎17. 解方程组: ‎ ‎【答案】‎ 考点:用加减消元法解二元一次方程组.‎ ‎18. 如图10,点在上,.‎ 求证: .‎ ‎【答案】详见解析 ‎【解析】试题分析:先将转化为AF=BE,再利用 证明两个三角形全等 试题解析:证明:因为AE=BF,所以,AE+EF=BF+EF,即AF=BE,‎ 在△ADF和△BCE中,‎ 所以,‎ 考点:用SAS证明两三角形全等 ‎19.某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.21·世纪*教育网 根据以上信息,解答下列问题:‎ ‎(1) 类学生有_________人,补全条形统计图;‎ ‎(2)类学生人数占被调查总人数的__________%;‎ ‎(3)从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率.‎ ‎【答案】(1)5;(2)36%;(3)‎ ‎【解析】试题分析:(1)数据总数-已知的小组频数=所求的小组频数 ‎(2)小组频数= (3)利用列举法求概率 考点:条形统计图 的考查,列举法求概率 ‎20. 如图12,在中,.‎ ‎(1)利用尺规作线段的垂直平分线,垂足为,交于点;(保留作图痕迹,不写作法)‎ ‎(2)若的周长为,先化简,再求的值.‎ ‎【答案】(1)详见解析;(2)‎ ‎【解析】试题分析:(1)尺规作图——作线段的垂直平分线;(2)化简求值,利用三角函数求其余两边的长度。‎ 试题解析:(1)如下图所示:‎ 考点:线段的垂直平分线的尺规作图;在直角三角形中利用三角函数求边长.‎ ‎21. 甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.2-1-c-n-j-y ‎(1)求乙队筑路的总公里数;‎ ‎(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.‎ ‎【答案】(1)80公里;(2)乙队每天筑路 公里 ‎【解析】试题分析:(1)求一个数的几分之几是多少,用乘法运算;(2)依据等量关系,列出分式方程 考点:列分式方程解应用题.‎ ‎22.将直线向下平移1个单位长度,得到直线,若反比例函数的图象与直线相交于点,且点的纵坐标是3.【版权所有:21教育】‎ ‎(1)求和的值;‎ ‎(2)结合图象求不等式的解集.‎ ‎【答案】(1)m=0,k=3;(2)‎ ‎【解析】试题分析:(1)利用一次函数的平移规则求出m,求出点A的坐标,再代入反比例函数中求出k的值.‎ 试题解析:(1) 由向下平移1个单位长度而得 ‎ 点的纵坐标为3,且在 上, ‎ ‎ 上, ‎ ‎(2)由图像得: ‎ 考点:一次函数与反比例函数的综合运用;数形结合 ‎23.已知抛物线,直线的对称轴与交于点,点与的顶点的距离是4.‎ ‎(1)求的解析式;‎ ‎(2)若随着的增大而增大,且与都经过轴上的同一点,求的解析式.‎ ‎【答案】(1);(2)或者 ‎【解析】试题分析:(1)利用二次函数的对称轴公式求出m,再利用两点间的距离公式求出n;(2)根据一次函数的性质求出k大于0,注意分类讨论解决问题,用待定系数法求一次函数的表达式.21教育名师原创作品 ‎(2)①当时, 与 轴交点为 ‎ ‎ 随 的增大而增大.‎ ‎ ‎ i.当 经过点 时 则有 ‎ ‎ (不符,舍去)‎ ii.当 经过点 时 ‎ 则有 ‎ ‎ ‎ ii.当 经过点 时 ‎ 则有 ‎ ‎ ‎ 综上述,或者 考点:二次函数的对称轴公式,两点间的的距离公式;待定系数法求一次函数表达式.‎ ‎24.如图13,矩形的对角线,相交于点,关于的对称图形为.‎ ‎(1)求证:四边形是菱形;‎ ‎(2)连接,若,.‎ ‎①求的值;‎ ‎②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.‎ ‎【答案】(1)详见解析;(2)① ②和 走完全程所需时间为 ‎ ‎【解析】试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.www-2-1-cnjy-com ‎ 在矩形 中, 为 的中点,且O为AC的中点 ‎ 为 的中位线 ‎ 同理可得: 为 的中点, ‎ ‎ ‎ ‎ ‎ ‎ 如下图,当P运动到 ,即 时,所用时间最短.‎ ‎ ‎ ‎ 在 中,设 ‎ ‎ ‎ 解得: ‎ 和 走完全程所需时间为 ‎ 考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置 ‎25.如图14,是的直径,,连接.‎ ‎(1)求证:;‎ ‎(2)若直线为的切线,是切点,在直线上取一点,使所在的直线与 所在的直线相交于点,连接.www.21-cn-jy.com ‎①试探究与之间的数量关系,并证明你的结论;‎ ‎②是否为定值?若是,请求出这个定值;若不是,请说明理由.‎ ‎【答案】(1)详见解析;(2)① ②‎ ‎【解析】试题分析:(1)直径所对的圆周角是圆心角的一半,等弧所对的圆周角是圆心角的一半;(2)①等角对等边;②21*cnjy*com ‎(2)①如图所示,作 于F 由(1)可得, 为等腰直角三角形.‎ ‎ 是 的中点. 为等腰直角三角形.‎ 又 是 的切线, ‎ ‎ 四边形 为矩形 ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎②当 为钝角时,如图所示,同样, ‎ ‎ ‎ ‎ ‎ ‎(3)当D在C左侧时,由(2)知 ‎ , ‎ ‎ ‎ ‎ ‎ ‎,‎ 在 中, ‎ ‎ ‎ 当D在C右侧时,过E作 于 ‎ 在 中, ‎ ‎ ‎ 考点:圆的相关知识的综合运用