- 483.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2015年湖北省咸宁市中考数学试卷
一、选择题(共8小题,每小题3分,满分24分)
1.(3分)(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )
A.
B.
C.
D.
2.(3分)(2015•咸宁)方程2x﹣1=3的解是( )
A.
﹣1
B.
﹣2
C.
1
D.
2
3.(3分)(2015•咸宁)一个几何体的三视图如图所示,则这个几何体是( )
A.
圆柱
B.
圆锥
C.
长方体
D.
正方体
4.(3分)(2015•咸宁)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( )
A.
50°
B.
40°
C.
30°
D.
25°
5.(3分)(2015•咸宁)下列运算正确的是( )
A.
a6÷a2=a3
B.
(a+b)2=a2+b2
C.
2﹣3=﹣6
D.
=﹣3
6.(3分)(2015•咸宁)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为( )
A.
1:2
B.
1:4
C.
1:5
D.
1:6
7.(3分)(2015•咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积( )
A.
由小到大
B.
由大到小
C.
不变
D.
先由小到大,后由大到小
8.(3分)(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:
①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有( )
A.
1个
B.
2个
C.
3个
D.
4个
二、细心填一填(本大题共有8小题,每小题3分,共24分)
9.(3分)(2015•咸宁)﹣6的倒数是 .
10.(3分)(2015•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖 元.
11.(3分)(2015•咸宁)将x2+6x+3配方成(x+m)2+n的形式,则m= .
12.(3分)(2015•咸宁)如果实数x,y满足方程组,则x2﹣y2的值为 .
13.(3分)(2015•咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有 人.
14.(3分)(2015•咸宁)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为 .
15.(3分)(2015•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为an,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= .
16.(3分)(2015•咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是 .(把你认为正确的说法的序号都填上)
三、专心解一解(本大题共8小题,满分72分)
17.(8分)(2015•咸宁)(1)计算:|1﹣|++(﹣2)0;
(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.
18.(6分)(2015•咸宁)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.
(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;
(2)选择(1)中一对加以证明.
19.(8分)(2015•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.
(1)证明:不论m为何值时,方程总有实数根;
(2)m为何整数时,方程有两个不相等的正整数根.
20.(9分)(2015•咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:
九(1)班:88,91,92,93,93,93,94,98,98,100
九(2)班:89,93,93,93,95,96,96,98,98,99
通过整理,得到数据分析表如下:
班级
最高分
平均分
中位数
众数
方差
九(1)班
100
m
93
93
12
九(2)班
99
95
n
93
8.4
(1)直接写出表中m、n的值;
(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;
(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.
21.(9分)(2015•咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.
(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.
(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.
22.(10分)(2015•咸宁)在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积.
(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.
(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.
23.(10分)(2015•咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.
理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;
(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;
(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.
24.(12分)(2015•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).
(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;
(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.
①试求△PAD的面积的最大值;
②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.
2015年湖北省咸宁市中考数学试卷
参考答案与试题解析
一、选择题(共8小题,每小题3分,满分24分)
1.(3分)(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )
A.
B.
C.
D.
考点:
正数和负数.菁优网版权所有
分析:
求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.
解答:
解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,
∴﹣0.6最接近标准,
故选:C.
点评:
本题考查了绝对值和正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.
2.(3分)(2015•咸宁)方程2x﹣1=3的解是( )
A.
﹣1
B.
﹣2
C.
1
D.
2
考点:
解一元一次方程.菁优网版权所有
专题:
计算题.
分析:
方程移项合并,把x系数化为1,即可求出解.
解答:
解:方程2x﹣1=3,
移项合并得:2x=4,
解得:x=2,
故选D
点评:
此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.
3.(3分)(2015•咸宁)一个几何体的三视图如图所示,则这个几何体是( )
A.
圆柱
B.
圆锥
C.
长方体
D.
正方体
考点:
由三视图判断几何体.菁优网版权所有
分析:
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
解答:
解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱.
故选A.
点评:
本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.
4.(3分)(2015•咸宁)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( )
A.
50°
B.
40°
C.
30°
D.
25°
考点:
平行线的性质.菁优网版权所有
分析:
由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.
解答:
解:如图,,
∵∠1=50°,
∴∠3=∠1=50°,
∴∠2=90°﹣50°=40°.
故选B.
点评:
此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.
5.(3分)(2015•咸宁)下列运算正确的是( )
A.
a6÷a2=a3
B.
(a+b)2=a2+b2
C.
2﹣3=﹣6
D.
=﹣3
考点:
同底数幂的除法;立方根;完全平方公式;负整数指数幂.菁优网版权所有
专题:
计算题.
分析:
A、原式利用同底数幂的除法法则计算得到结果,即可做出判断;
B、原式利用完全平方公式化简得到结果,即可做出判断;
C、原式利用负整数指数幂法则计算得到结果,即可做出判断;
D、原式利用立方根定义计算得到结果,即可做出判断.
解答:
解:A、原式=a4,错误;
B、原式=a2+b2+2ab,错误;
C、原式=,错误;
D、原式=﹣3,正确,
故选D
点评:
此题考查了同底数幂的除法,立方根,完全平方公式,以及负整数指数幂,熟练掌握公式及法则是解本题的关键.
6.(3分)(2015•咸宁)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为( )
A.
1:2
B.
1:4
C.
1:5
D.
1:6
考点:
位似变换.菁优网版权所有
分析:
利用位似图形的性质首先得出位似比,进而得出面积比.
解答:
解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,
∴OA:OD=1:2,
∴△ABC与△DEF的面积之比为:1:4.
故选:B.
点评:
此题主要考查了位似图形的性质,得出位似比是解题关键.
7.(3分)(2015•咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积( )
A.
由小到大
B.
由大到小
C.
不变
D.
先由小到大,后由大到小
考点:
扇形面积的计算.菁优网版权所有
分析:
作DM⊥AC于M,DN⊥BC于N,构造正方形DMCN,利用正方形和等腰直角三角形的性质,通过证明△DMG≌△DNH,把△DHN补到△DNG的位置,得到四边形DGCH的面积=正方形DMCN的面积,于是得到阴影部分的面积=扇形的面积﹣正方形DMCN的面积,即为定值.
解答:
解:作DM⊥AC于M,DN⊥BC于N,连接DC,
∵CA=CB,∠ACB=90°,
∴∠A=∠B=45°,
DM=AD=AB,DN=BD=AB,
∴DM=DN,
∴四边形DMCN是正方形,
∴∠MDN=90°,
∴∠MDG=90°﹣∠GDN,
∵∠EDF=90°,
∴∠NDH=90°﹣∠GDN,
∴∠MDG=∠NDH,
在△DMG和△DNH中,
,
∴△DMG≌△DNH,
∴四边形DGCH的面积=正方形DMCN的面积,
∵正方形DMCN的面积=DM2=AB2,
∴四边形DGCH的面积=,
∵扇形FDE的面积==,
∴阴影部分的面积=扇形面积﹣四边形DGCH的面积=(定值),
故选C.
点评:
本题主要考查了等腰直角三角形斜边中线的性质,正方形的性质,全等三角形的判定和性质,能正确作出辅助线构造全等三角形是解题的关键.
8.(3分)(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:
①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有( )
A.
1个
B.
2个
C.
3个
D.
4个
考点:
二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).菁优网版权所有
分析:
①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;
②根据x=2时,y<0确定4a+2b+c的符号;
③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;
④根据函数图象确定使y≤3成立的x的取值范围.
解答:
解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;
∵x=2时,y<0,∴4a+2b+c<0,②正确;
根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;
使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,
故选:B.
点评:
本题考查的是二次函数的图象、二次函数的最值、二次函数与不等式,掌握二次函数的性质、正确获取图象信息是解题的关键.
二、细心填一填(本大题共有8小题,每小题3分,共24分)
9.(3分)(2015•咸宁)﹣6的倒数是 .
考点:
倒数.菁优网版权所有
分析:
根据倒数的定义求解.
解答:
解:因为(﹣6)×(﹣)=1,
所以﹣6的倒数是﹣.
点评:
倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
10.(3分)(2015•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖 a 元.
考点:
列代数式.菁优网版权所有
分析:
8折=80%,把原价当作单位“1”,则现价是原价的80%,根据分数除法的意义原价是:a÷80%=,得结果.
解答:
解:8折=80%,
a÷80%=,
故答案为:.
点评:
本题主要考查了打折问题,找准单位“1”,弄清各种量的关系是解答此题的关键.
11.(3分)(2015•咸宁)将x2+6x+3配方成(x+m)2+n的形式,则m= 3 .
考点:
配方法的应用.菁优网版权所有
专题:
计算题.
分析:
原式配方得到结果,即可求出m的值.
解答:
解:x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6=(x+m)2+n,
则m=3,
故答案为:3
点评:
此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.
12.(3分)(2015•咸宁)如果实数x,y满足方程组,则x2﹣y2的值为 ﹣ .
考点:
解二元一次方程组;平方差公式.菁优网版权所有
专题:
计算题.
分析:
方程组第二个方程变形求出x+y的值,原式利用平方差公式化简,将各自的值代入计算即可求出值.
解答:
解:方程组第二个方程变形得:2(x+y)=5,即x+y=,
∵x﹣y=﹣,
∴原式=(x+y)(x﹣y)=﹣,
故答案为:﹣
点评:
此题考查了解二元一次方程组,以及平方差公式,熟练掌握运算法则是解本题的关键.
13.(3分)(2015•咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有 360 人.
考点:
扇形统计图.菁优网版权所有
分析:
根据扇形图求出喜爱科普常识的学生所占的百分比,1200乘百分比得到答案.
解答:
解:喜爱科普常识的学生所占的百分比为:1﹣40%﹣20%﹣10%=30%,
1200×30%=360,
故答案为:360.
点评:
本题考查的是扇形统计图的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.
14.(3分)(2015•咸宁)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为 8 .
考点:
一次函数图象上点的坐标特征;坐标与图形变化-平移.菁优网版权所有
分析:
根据题意确定点A′的纵坐标,根据点A′落在直线y=﹣x上,求出点A′的横坐标,确定△OAB沿x轴向左平移的单位长度即可得到答案.
解答:
解:由题意可知,点A移动到点A′位置时,纵坐标不变,
∴点A′的纵坐标为6,
﹣x=6,解得x=﹣8,
∴△OAB沿x轴向左平移得到△O′A′B′位置,移动了8个单位,
∴点B与其对应点B′间的距离为8,
故答案为:8.
点评:
本题考查的是一次函数图象上点的坐标特征和图形的平移,确定三角形OAB移动的距离是解题的关键.
15.(3分)(2015•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为an,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 1.6×105或160000 .
考点:
规律型:数字的变化类.菁优网版权所有
分析:
首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.
解答:
解:∵;;;…
∴;
∴.
故答案为:1.6×105或160000.
点评:
本题考查的是规律发现,根据计算a1+a2,a2+a3,a3+a4的值可以发现规律为,发现规律是解决本题的关键.
16.(3分)(2015•咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是 ②④ .(把你认为正确的说法的序号都填上)
考点:
四边形综合题.菁优网版权所有
分析:
根据正方形对角线的性质可得出当E移动到与C重合时,F点和D点重合,此时G点为AC中点,故①错误;求得∠BAE=∠CBF,根据正方形的性质可得AB=BC,∠ABC=∠C=90°,然后利用“角角边”证明△ABE和△BCF全等,根据全等三角形对应角相等可得AE=BF,判断出②正确;根据题意,G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,然后求出弧的长度,判断出③错误;由于OC和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,根据勾股定理求出最小CG长度.
解答:
解:∵在正方形ABCD中,BF⊥AE,
∴∠AGB保持90°不变,
∴G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,
∴当E移动到与C重合时,F点和D点重合,此时G点为AC中点,
∴AG=GE,故①错误;
∵BF⊥AE,
∴∠AEB+∠CBF=90°,
∵∠AEB+∠BAE=90°,
∴∠BAE=∠CBF,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(AAS),
∴故②正确;
∵当E点运动到C点时停止,
∴点G运动的轨迹为圆,
圆弧的长=×2=,故③错误;
由于OC和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,
OC==,
CG的最小值为OC﹣OG=﹣1,故④正确;
综上所述,正确的结论有②④.
故答案为②④.
点评:
本题考查了正方形的性质,全等三角形的判定与性质,弧长的计算,勾股定理的应用,熟记性质并求出△ABE和△BCF全等是解题的关键,用阿拉伯数字加弧线表示角更形象直观.
三、专心解一解(本大题共8小题,满分72分)
17.(8分)(2015•咸宁)(1)计算:|1﹣|++(﹣2)0;
(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.
考点:
整式的混合运算;实数的运算;零指数幂.菁优网版权所有
专题:
计算题.
分析:
(1)原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用零指数幂法则计算即可得到结果;
(2)原式第一项利用多项式除以单项式法则计算,第二项利用完全平方公式化简,去括号合并即可得到结果.
解答:
解:(1)原式=﹣1+2+1=3;
(2)原式=a2﹣2ab﹣b2﹣a2+2ab﹣b2=﹣2b2.
点评:
此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.
18.(6分)(2015•咸宁)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.
(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;
(2)选择(1)中一对加以证明.
考点:
相似三角形的判定;全等三角形的判定.菁优网版权所有
分析:
(1)利用相似三角形的性质以及全等三角形的性质得出符合题意的答案;
(2)利用相似三角形的判定以及全等三角形的判定方法分别得出即可.
解答:
解:(1)△ADE≌△BDE,△ABC∽△BCD;
(2)证明:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵BD为角平分线,
∴∠ABD=∠ABC=36°=∠A,
在△ADE和△BDE中
∵,
∴△ADE≌△BDE(AAS);
证明:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵BD为角平分线,
∴∠DBC=∠ABC=36°=∠A,
∵∠C=∠C,
∴△ABC∽△BCD.
点评:
此题主要考查了相似三角形以及全等三角形的判定,正确把握判定方法是解题关键.
19.(8分)(2015•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.
(1)证明:不论m为何值时,方程总有实数根;
(2)m为何整数时,方程有两个不相等的正整数根.
考点:
根的判别式;解一元二次方程-公式法.菁优网版权所有
分析:
(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;
(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m的值.
解答:
解:(1)△=(m+2)2﹣8m
=m2﹣4m+4
=(m﹣2)2,
∵不论m为何值时,(m﹣2)2≥0,
∴△≥0,
∴方程总有实数根;
(2)解方程得,x=,
x1=,x2=1,
∵方程有两个不相等的正整数根,
∴m=1或2,m=2不合题意,
∴m=1.
点评:
本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.
20.(9分)(2015•咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:
九(1)班:88,91,92,93,93,93,94,98,98,100
九(2)班:89,93,93,93,95,96,96,98,98,99
通过整理,得到数据分析表如下:
班级
最高分
平均分
中位数
众数
方差
九(1)班
100
m
93
93
12
九(2)班
99
95
n
93
8.4
(1)直接写出表中m、n的值;
(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;
(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.
考点:
列表法与树状图法;加权平均数;中位数;众数;方差.菁优网版权所有
专题:
计算题.
分析:
(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值即可;
(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;
(3)画树状图得出所有等可能的情况数,找出另外两个决赛名额落在同一个班的情况数,即可求出所求的概率.
解答:
解:(1)m=(88+91+92+93+93+93+94+98+98+100)=94;
把九(2)班成绩排列为:89,93,93,93,95,96,96,98,98,99,
则中位数n=(95+96)=95.5;
(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);
(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,
画树状图,如图所示:
所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,
则P(另外两个决赛名额落在同一个班)==.
点评:
此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
21.(9分)(2015•咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.
(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.
(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.
考点:
切线的性质;菱形的判定与性质;相似三角形的判定与性质.菁优网版权所有
分析:
(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;
(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.
解答:
(1)证明:如图1,连接OD、OE、ED.
∵BC与⊙O相切于一点D,
∴OD⊥BC,
∴∠ODB=90°=∠C,
∴OD∥AC,
∵∠B=30°,
∴∠A=60°,
∵OA=OE,
∴△AOE是等边三角形,
∴AE=AO=0D,
∴四边形AODE是平行四边形,
∵OA=OD,
∴四边形AODE是菱形.
(2)解:设⊙O的半径为r.
∵OD∥AC,
∴△OBD∽△ABC.
∴,即10r=6(10﹣r).
解得r=,
∴⊙O的半径为.
如图2,连接OD、DF.
∵OD∥AC,
∴∠DAC=∠ADO,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠DAC=∠DAO,
∵AF是⊙O的直径,
∴∠ADF=90°=∠C,
∴△ADC∽△AFD,
∴,
∴AD2=AC•AF,
∵AC=6,AF=,
∴AD2=×6=45,
∴AD==3.
点评:
本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.
22.(10分)(2015•咸宁)在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积.
(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.
(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.
考点:
一次函数的应用;分式方程的应用.菁优网版权所有
分析:
(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;
(2)根据题意得到100x+50y=1800,整理得:y=36﹣2x,即可解答.
(3)根据甲乙两队施工的总天数不超过26天,得到x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,根据一次函数的性质,即可解答.
解答:
解:(1)设乙工程队每天能完成绿化的面积是xm2,
根据题意得:,
解得:x=50,
经检验,x=50是原方程的解,
则甲工程队每天能完成绿化的面积是50×2=100(m2),
答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;
(2)根据题意,得:100x+50y=1800,
整理得:y=36﹣2x,
∴y与x的函数解析式为:y=36﹣2x.
(3)∵甲乙两队施工的总天数不超过26天,
∴x+y≤26,
∴x+36﹣2x≤26,
解得:x≥10,
设施工总费用为w元,根据题意得:
w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,
∵k=0.1>0,
∴w随x减小而减小,
∴当x=10时,w有最小值,最小值为0.1×10+9=10,
此时y=36﹣20=16.
答:安排甲队施工10天,乙队施工16天时,施工总费用最低.
点评:
本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.
23.(10分)(2015•咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.
理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;
(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;
(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.
考点:
四边形综合题.菁优网版权所有
分析:
(1)根据对等四边形的定义,进行画图即可;
(2)连接AC,BD,证明Rt△ADB≌Rt△ACB,得到AD=BC,又AB是⊙O的直径,所以AB≠CD,即可解答;
(3)根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.
解答:
解:(1)如图1所示(画2个即可).
(2)如图2,连接AC,BD,
∵AB是⊙O的直径,
∴∠ADB=∠ACB=90°,
在Rt△ADB和Rt△ACB中,
∴Rt△ADB≌Rt△ACB,
∴AD=BC,
又∵AB是⊙O的直径,
∴AB≠CD,
∴四边形ABCD是对等四边形.
(3)如图3,点D的位置如图所示:
①若CD=AB,此时点D在D1的位置,CD1=AB=13;
②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,
过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,
设BE=x,
∵tan∠PBC=,
∴AE=,
在Rt△ABE中,AE2+BE2=AB2,
即,
解得:x1=5,x2﹣5(舍去),
∴BE=5,AE=12,
∴CE=BC﹣BE=6,
由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,
在Rt△AFD2中,,
∴,,
综上所述,CD的长度为13、12﹣或12+.
点评:
本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.在(3)中注意分类讨论思想的应用、勾股定理的应用.
24.(12分)(2015•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).
(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;
(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.
①试求△PAD的面积的最大值;
②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.
考点:
反比例函数综合题.菁优网版权所有
分析:
(1)根据一次函数的性质,结合函数图象可写出新函数的两条性质;求新函数的解析式,可分两种情况进行讨论:①x≥﹣3时,显然y=x+3;②当x<﹣3时,利用待定系数法求解;
(2)①先把点C(1,a)代入y=x+3,求出C(1,4),再利用待定系数法求出反比例函数解析式为y=.由点D是线段AC上一动点(不包括端点),可设点D的坐标为(m,m+3),且﹣3<m<1,那么P(,m+3),PD=﹣m,再根据三角形的面积公式得出△PAD的面积为S=(﹣m)×(m+3)=﹣m2﹣m+2=﹣(m+)2+,然后利用二次函数的性质即可求解;
②先利用中点坐标公式求出AC的中点D的坐标,再计算DP,DE的长度,如果DP=DE,那么根据对角线互相平分的四边形是平行四边形可得四边形PAEC为平行四边形;如果DP≠DE,那么不是平行四边形.
解答:
解:(1)如图1,均是正整数新函数的两条性质:①函数的最小值为0;
②函数图象的对称轴为直线x=﹣3;
由题意得A点坐标为(﹣3,0).分两种情况:
①x≥﹣3时,显然y=x+3;
②当x<﹣3时,设其解析式为y=kx+b.
在直线y=x+3中,当x=﹣4时,y=﹣1,
则点(﹣4,﹣1)关于x轴的对称点为(﹣4,1).
把(﹣4,1),(﹣3,0)代入y=kx+b,
得,解得,
∴y=﹣x﹣3.
综上所述,新函数的解析式为y=;
(2)如图2,①∵点C(1,a)在直线y=x+3上,
∴a=1+3=4.
∵点C(1,4)在双曲线y=上,
∴k=1×4=4,y=.
∵点D是线段AC上一动点(不包括端点),
∴可设点D的坐标为(m,m+3),且﹣3<m<1.
∵DP∥x轴,且点P在双曲线上,
∴P(,m+3),
∴PD=﹣m,
∴△PAD的面积为
S=(﹣m)×(m+3)=﹣m2﹣m+2=﹣(m+)2+,
∵a=﹣<0,
∴当m=﹣时,S有最大值,为,
又∵﹣3<﹣<1,
∴△PAD的面积的最大值为;
②在点D运动的过程中,四边形PAEC不能为平行四边形.理由如下:
当点D为AC的中点时,其坐标为(﹣1,2),此时P点的坐标为(2,2),E点的坐标为(﹣5,2),
∵DP=3,DE=4,
∴EP与AC不能互相平分,
∴四边形PAEC不能为平行四边形.
点评:
本题是反比例函数综合题,其中涉及到利用待定系数法求反比例函数、一次函数的解析式,反比例函数、一次函数图象上点的坐标特征,三角形的面积,二次函数最值的求法,平行四边形的判定等知识,综合性较强,难度适中.利用数形结合、分类讨论是解题的关键.