• 1.18 MB
  • 2021-05-10 发布

云南省中考数学试题及答案

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2011年云南省中考数学试题及答案解析 ‎(全卷三个大题24小题,满分120分,考试用时120分钟)‎ 一、填空题(本大题共8个小题,每个小题3分,满分24分)‎ 的相反数是 .‎ ‎[答案] ‎ ‎[解析]负数的相反数是正数,所以的相反数是是 如图,,,则 . ‎ ‎[答案] ‎ ‎[解析] 如图,平角定义 在函数中,自变量的取值范围是 .‎ ‎[答案] ‎ ‎[解析] 由 计算 .‎ ‎[答案] ‎ ‎[解析] ‎ 如图,在菱形中,,,则菱形的周长是 .‎ ‎[答案] ‎ ‎[解析] 菱形,又,是正三角形,故菱形的周长是:‎ 如图,的半径是,,则的长是 (结果保留).‎ ‎[答案] ‎ ‎[解析] 如图,因为、同是对的圆周角和圆心角,所以 故,‎ 已知,,则 .‎ ‎[答案] ‎ ‎[解析] ‎ 下面是按一定规律排列的一列数:‎ ‎,,,,‎ 那么第个数是 .‎ ‎[答案] ‎ ‎[解析] 由于,,‎ ‎,那么第个数是 二、选择题(本大题共7个小题,每个小题只有一个正确选项,每小题3分,满分21分)‎ 第六次全国人口普查结果公布:云南省常住人口约为人,这个数据用科学记数法可表示 为 人.‎ ‎ ‎ ‎[答案] ‎ ‎[解析] ,故选 下列运算,结果正确的是 ‎ ‎ ‎ ‎ ‎[答案] ‎ ‎[解析] 因为,,‎ ‎,故选 下面几何体的俯视图是 ‎[答案] ‎ ‎[解析] 俯视能见的图形是三个排成一排的三个正方形,故选 为了庆祝建党周年,某单位举行了“颂党”歌咏比赛,进入决赛的名选手的成绩分别是:,,,,,,(单位:分),这组数据的中位数和平均数是 ‎ ‎ ‎[答案] ‎ ‎[解析] 计算,平均数是,故排除、,又是七个数中最小的数不可以是中位数,故排除,所以选 据调查,某市2011年的房价为元/,预计2013年将达到元/,求这两年的年平均增长率,设年平均增长率为,根据题意,所列方程为 ‎ ‎ ‎[答案] ‎ ‎[解析] 一年后,即2012年该市的房价是 两年后,即2013年该市的房价是 所以,根据题意,所列方程为,故选 如图,已知,,则经过点的反比例函数的解析式为 ‎ ‎ ‎[答案] ‎ ‎[解析] 如图,过作,垂足是,‎ 在,,,‎ ‎,由,得经过点的反比例函数的解析式为,故选 如图,已知与的边相切于点,,的半径为,当与相切时,的半径是 ‎ ‎ ‎ ‎ ‎[答案] ‎ ‎[解析] 如图,,的半径为,‎ 与相切有内切和外切两种情况,内切时,半径为,外切时,半径为,故选 三、解答题(本大题共9个小题,满分75分)‎ ‎(本小题6分)解方程组 ‎ ‎[答案] ‎ ‎[解析] 由,得:,把代入,得 ‎(本小题8分)先化简,再从、、三个数中,选择一个你认为合适的数作为的值代入求值.‎ ‎[答案] 化简得;取求得值为.‎ ‎[解析] ‎ ‎∴‎ 取代入,得原式的值为.‎ ‎(本小题8分)如图,在平行四边形中,点是对角线上的一点,,,垂足分别为、 ,且,平行四边形是菱形吗?这什么?‎ ‎[答案] 平行四边形是菱形.‎ ‎[解析] 如图,‎ 在 所以平行四边形的邻边相等,故平行四边形是菱形.‎ ‎(本小题8分)如图,下列网格中,每个小方格的边长都是1.‎ 分别作出四边形关于轴、轴、原点的对称图形;‎ 求出四边形的面积. ‎ ‎[答案] 略;.‎ ‎[解析] 如图,四边形关于轴、轴、原点的对称图形分别是四边形、四边形、四边形;‎ 四边形的面积 ‎(本小题8分)如图,甲、乙两船同时从港口出发,甲船以海里/时的速度沿北偏东方向航行,乙船沿北偏西方向航行,半小时后甲船到达点,乙船正好到达甲船正西方向的点,求乙船的速度. ‎ ‎[答案]. 海里/时 ‎[解析] 因为甲船航行半小时后到达点,‎ 所以(海里)‎ 又,,点是点的正西方向,‎ ‎ 所以,(海里)‎ ‎ 故,乙船的速度是海里/时 ‎(本小题8分)为贯彻落实云南省教育厅提出的“三生教育”,在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了名同学平均每周在家做家务的时间,统计并制作了如下的频数分布和扇形统计图:‎ 根据上述信息回答下列问题:‎ ‎ , ;‎ ‎ 在扇形统计图中,组所占圆心角的度数为 ;‎ ‎ 全校共有名学生,估计该校平均每周做家务时间不少于小时的学生约有多少人?‎ ‎[答案]. ;; 约人 ‎[解析] ,;‎ ‎ 在扇形统计图中,组所占圆心角的度数为;‎ ‎ (人)‎ 该校平均每周做家务时间不少于小时的学生约有人 ‎(本小题8分)小华和小丽两人玩数字游戏,先由小丽心中任意想一个数字记为,再由小华猜小丽刚才想的数字,把小华猜的数字记为,且他们想和猜的数字只能在,,,这四个数中.‎ ‎ 请用树状图或列表法表示了他们想和猜的所有情况;‎ ‎ 如果他们想和猜的数相同,则称他们“心灵相通”。求他们“心灵相通”的概率;‎ ‎ 如果他们想和猜的数字满足,则称他们“心有灵犀”。求他们“心有灵犀”的概率;‎ ‎[答案]. 略;; ‎ ‎[解析] 树状图 列表法 想数 ‎1‎ ‎1‎ ‎1‎ ‎1‎ ‎2‎ ‎2‎ ‎2‎ ‎2‎ ‎3‎ ‎3‎ ‎3‎ ‎3‎ ‎4‎ ‎4‎ ‎4‎ ‎4‎ 猜数 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ 由知道,想和猜的数共有16组,他们“心灵相通”的组有4组,所以,他们“心灵相通”‎ 的概率为 由满足,即他们“心有灵犀”的数有10组,所以他们“心有灵犀”的概率 ‎(本小题8分)随着人们节能环保意识的增强,绿色交通工具越来越受到人们的青睐,电动摩托成为人们首选的交通工具,某商场计划用不超过元购进、两种不同品牌的电动摩托辆,预计这批电动摩托全部销售后可获得不少于元的利润,、两种品牌电动摩托的进价和售价如下表所示:‎ 设该商场计划进品牌电动摩托辆,两种品牌电动摩托全部销售后可获利润元.‎ ‎ 写出与之间的函数关系式;‎ ‎ 该商场购进品牌电动摩托多少辆时?获利最大,最大利润是多少?‎ ‎[答案]. ;辆,元.‎ ‎[解析] 该商场计划进品牌电动摩托辆,则;进品牌电动摩托辆,所以 ‎(辆)‎ ‎(元)‎ 故,该商场购进品牌电动摩托辆时获利最大,最大利润是元.‎ ‎(本小题13分)如图,四边形是矩形,点的坐标为,直线和直线相交于点,点是 的中点,,垂足为.‎ ‎ 求直线的解析式;‎ ‎ 求经过点、、的抛物线的解析式;‎ ‎ 在抛物线上是否存在,使得,若存在,求出点的坐标,若不存在,请说明理由。‎ ‎[答案]. ;;、、‎ ‎[解析] 如图,易知、,设直线的解析式为:,则 ‎ 所以,直线的解析式为 ‎ 设经过点、、的抛物线的解析式为:,则 ‎,所以经过点、、的抛物线的解析式为:‎ 设存在点,坐标为,则 又,‎ ‎,所以,‎ 把分别代入,得 由:‎ 由:‎ 所以的坐标为:、、‎