- 829.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考数学几何选择填空压轴题精选
一.选择题(共13小题)
1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为( )
①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.
A.
1个
B.
2个
C.
3个
D.
4个
2.(2013•连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为( )
A.
B.
C.
D.
3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有( )
A.
1个
B.
2个
C.
3个
D.
4个
4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:
①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是( )
A.
①③
B.
②④
C.
①④
D.
②③
5.(2008•荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为( )
A.
5:3
B.
3:5
C.
4:3
D.
3:4
6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为( )
A.
B.
C.
D.
7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是( )
A.
B.
6
C.
D.
3
8.(2013•牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是( )
A.
1个
B.
2个
C.
3个
D.
4个
9.(2012•黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:
①(BE+CF)=BC;
②S△AEF≤S△ABC;
③S四边形AEDF=AD•EF;
④AD≥EF;
⑤AD与EF可能互相平分,
其中正确结论的个数是( )
A.
1个
B.
2个
C.
3个
D.
4个
10.(2012•无锡一模)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论 ①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有( )
A.
①④⑤
B.
①②④
C.
③④⑤
D.
②③④
11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;
③2OH+DH=BD;④BG=DG;⑤.
其中正确的结论是( )
A.
①②③
B.
①②④
C.
①②⑤
D.
②④⑤
12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有( )
A.
①②③
B.
①②④
C.
①③④
D.
①②③④
13.(2013•钦州模拟)正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为( )
A.
10
B.
12
C.
14
D.
16
二.填空题(共16小题)
14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有 _________ .
15.(2012•门头沟区一模)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= _________ .第n次操作得到△AnBnCn,则△AnBnCn的面积Sn= _________ .
16.(2009•黑河)如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为 _________ .
17.(2012•通州区二模)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2; …;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012= _________ .
18.(2009•湖州)如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,Dn,分别记△BD1E1,△BD2E2,△BD3E3,…,△BDnEn的面积为S1,S2,S3,…Sn.则Sn= _________ S△ABC(用含n的代数式表示).
19.(2011•丰台区二模)已知:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、Dn,分别记△BD1E1、△BD2E2、△BD3E3、…、△BDnEn的面积为S1、S2、S3、…Sn.设△ABC的面积是1,则S1= _________ ,Sn= _________ (用含n的代数式表示).
20.(2013•路北区三模)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 _________ .
21.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= _________ ,= _________ .
22.(2013•沐川县二模)如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为 _________ ;面积小于2011的阴影三角形共有 _________ 个.
23.(2010•鲤城区质检)如图,已知点A1(a,1)在直线l:上,以点A1为圆心,以为半径画弧,交x轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在x轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在x轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a= _________ ;②△A4B4B5的面积是 _________ .
24.(2013•松北区二模)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于 _________ .
25.(2007•淄川区二模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于 _________ .
26.(2009•泰兴市模拟)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= _________ AB.
27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是 _________ 个.
28.(2012•贵港一模)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为 _________ cm2.
29.(2012•天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为 _________ .
30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值范围( ).
参考答案与试题解析
一.选择题(共13小题)
1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为( )
①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.
A.
1个
B.
2个
C.
3个
D.
4个
解答:
解:作EJ⊥BD于J,连接EF
①∵BE平分∠DBC
∴EC=EJ,
∴△DJE≌△ECF
∴DE=FE
∴∠HEF=45°+22.5°=67.5°
∴∠HFE==22.5°
∴∠EHF=180°﹣67.5°﹣22.5°=90°
∵DH=HF,OH是△DBF的中位线
∴OH∥BF
∴OH=BF
②∵四边形ABCD是正方形,BE是∠DBC的平分线,
∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,
∵CE=CF,
∴Rt△BCE≌Rt△DCF,
∴∠EBC=∠CDF=22.5°,
∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,
∵OH是△DBF的中位线,CD⊥AF,
∴OH是CD的垂直平分线,
∴DH=CH,
∴∠CDF=∠DCH=22.5°,
∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,
∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故②正确;
③∵OH是△BFD的中位线,
∴DG=CG=BC,GH=CF,
∵CE=CF,
∴GH=CF=CE
∵CE<CG=BC,
∴GH<BC,故此结论不成立;
④∵∠DBE=45°,BE是∠DBF的平分线,
∴∠DBH=22.5°,
由②知∠HBC=∠CDF=22.5°,
∴∠DBH=∠CDF,
∵∠BHD=∠BHD,
∴△DHE∽△BHD,
∴=
∴DH=HE•HB,故④成立;
所以①②④正确.
故选C.
2.(2013•连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为( )
A.
B.
C.
D.
解答:
解:∵Rt△ABC中,BC=,∠ACB=90°,∠A=30°,
∴AC==BC=6,
∴S△ABC=AC•BC=6,
∵D1E1⊥AC,
∴D1E1∥BC,
∴△BD1E1与△CD1E1同底同高,面积相等,
∵D1是斜边AB的中点,
∴D1E1=BC,CE1=AC,
∴S1=BC•CE1=BC×AC=×AC•BC=S△ABC;
∴在△ACB中,D2为其重心,
∴D2E1=BE1,
∴D2E2=BC,CE2=AC,S2=××AC•BC=S△ABC,
∴D3E3=BC,CE2=AC,S3=S△ABC…;
∴Sn=S△ABC;
∴S2013=×6=.
故选C.
3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有( )
A.
1个
B.
2个
C.
3个
D.
4个
解答:
解:根据BE=AE,∠GBE=∠CAE,∠BEG=∠CEA可判定①△BEG≌△AEC;
用反证法证明②∠GAC≠∠GCA,假设∠GAC=∠GCA,则有△AGC为等腰三角形,F为AC的中点,又BF⊥AC,可证得AB=BC,与题设不符;
由①知△BEG≌△AEC 所以GE=CE 连接ED、四边形ABED为平行四边形,
∵∠ABC=45°,AE⊥BC于点E,
∴∠GED=∠CED=45°,
∴△GED≌△CED,
∴DG=DC;
④设AG为X,则易求出GE=EC=2﹣X 因此,S△AGC=SAEC﹣SGEC=﹣+x=﹣(x2﹣2x)
=﹣(x2﹣2x+1﹣1)=﹣(x﹣1)2+,当X取1时,面积最大,所以AG等于1,所以G是AE中点,
故G为AE中点时,GF最长,故此时△AGC的面积有最大值.
故正确的个数有3个.
故选C.
4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:
①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是( )
A.
①③
B.
②④
C.
①④
D.
②③
解答:
解:∵DF=BD,
∴∠DFB=∠DBF,
∵AD∥BC,DE=BC,
∴∠DEC=∠DBC=45°,
∴∠DEC=2∠EFB,
∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,
∴CG=BC=DE,
∵DE=DC,
∴∠DEG=∠DCE,
∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,
∠DGE=180°﹣(∠BGD+∠EGF),
=180°﹣(∠BGD+∠BGC),
=180°﹣(180°﹣∠DCG)÷2,
=180°﹣(180°﹣45°)÷2,
=112.5°,
∴∠GHC=∠DGE,
∴△CHG≌△EGD,
∴∠EDG=∠CGB=∠CBF,
∴∠GDH=∠GHD,
∴S△CDG=S▭DHGE.
故选D.
5.(2008•荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为( )
A.
5:3
B.
3:5
C.
4:3
D.
3:4
解答:
解:由题意知△BCE绕点C顺时转动了90度,
∴△BCE≌△DCF,∠ECF=∠DFC=90°,
∴CD=BC=5,DF∥CE,
∴∠ECD=∠CDF,
∵∠EMC=∠DMF,
∴△ECM∽△FDM,
∴DM:MC=DF:CE,
∵DF==4,
∴DM:MC=DF:CE=4:3.
故选C.
6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为( )
A.
B.
C.
D.
解答:
解:∵矩形ABCD的对角线互相平分,面积为5,
∴平行四边形ABC1O1的面积为,
∵平行四边形ABC1O1的对角线互相平分,
∴平行四边形ABC2O2的面积为×=,
…,
依此类推,平行四边形ABC2009O2009的面积为.
故选B.
7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是( )
A.
B.
6
C.
D.
3
解答:
解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.
∵AD是∠BAC的平分线,
∴M′H=M′N′,
∴BH是点B到直线AC的最短距离(垂线段最短),
∵AB=4,∠BAC=45°,
∴BH=AB•sin45°=6×=3.
∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=3.
故选C.
8.(2013•牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是( )
A.
1个
B.
2个
C.
3个
D.
4个
解答:
解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,
∴PM=BC,PN=BC,
∴PM=PN,正确;
②在△ABM与△ACN中,
∵∠A=∠A,∠AMB=∠ANC=90°,
∴△ABM∽△ACN,
∴,正确;
③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,
∴∠ABM=∠ACN=30°,
在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,
∵点P是BC的中点,BM⊥AC,CN⊥AB,
∴PM=PN=PB=PC,
∴∠BPN=2∠BCN,∠CPM=2∠CBM,
∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,
∴∠MPN=60°,
∴△PMN是等边三角形,正确;
④当∠ABC=45°时,∵CN⊥AB于点N,
∴∠BNC=90°,∠BCN=45°,
∴BN=CN,
∵P为BC边的中点,
∴PN⊥BC,△BPN为等腰直角三角形
∴BN=PB=PC,正确.
故选D.
9.(2012•黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:
①(BE+CF)=BC;
②S△AEF≤S△ABC;
③S四边形AEDF=AD•EF;
④AD≥EF;
⑤AD与EF可能互相平分,
其中正确结论的个数是( )
A.
1个
B.
2个
C.
3个
D.
4个
解答:
解:∵Rt△ABC中,AB=AC,点D为BC中点,
∴∠C=∠BAD=45°,AD=BD=CD,
∵∠MDN=90°,
∴∠ADE+∠ADF=∠ADF+∠CDF=90°,
∴∠ADE=∠CDF.
在△AED与△CFD中,
∵,
∴△AED≌△CFD(ASA),
∴AE=CF,
在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.
故①正确;
设AB=AC=a,AE=CF=x,则AF=a﹣x.
∵S△AEF=AE•AF=x(a﹣x)=﹣(x﹣a)2+a2,
∴当x=a时,S△AEF有最大值a2,
又∵S△ABC=×a2=a2,
∴S△AEF≤S△ABC.
故②正确;
EF2=AE2+AF2=x2+(a﹣x)2=2(x﹣a)2+a2,
∴当x=a时,EF2取得最小值a2,
∴EF≥a(等号当且仅当x=a时成立),
而AD=a,∴EF≥AD.
故④错误;
由①的证明知△AED≌△CFD,
∴S四边形AEDF=S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,
∵EF≥AD,
∴AD•EF≥AD2,
∴AD•EF>S四边形AEDF
故③错误;
当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.
故⑤正确.
综上所述,正确的有:①②⑤,共3个.
故选C.
10.(2012•无锡一模)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论 ①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有( )
A.
①④⑤
B.
①②④
C.
③④⑤
D.
②③④
解答:
解:∵四边形ABCD是正方形,
∴∠GAD=∠ADO=45°,
由折叠的性质可得:∠ADG=∠ADO=22.5°,
故①正确.
∵tan∠AED=,
由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,
∴AE=EF<BE,
∴AE<AB,
∴tan∠AED=>2,
故②错误.
∵∠AOB=90°,
∴AG=FG>OG,△AGD与△OGD同高,
∴S△AGD>S△OGD,
故③错误.
∵∠EFD=∠AOF=90°,
∴EF∥AC,
∴∠FEG=∠AGE,
∵∠AGE=∠FGE,
∴∠FEG=∠FGE,
∴EF=GF,
∵AE=EF,
∴AE=GF,
故④正确.
∵AE=EF=GF,AG=GF,
∴AE=EF=GF=AG,
∴四边形AEFG是菱形,
∴∠OGF=∠OAB=45°,
∴EF=GF=OG,
∴BE=EF=×OG=2OG.
故⑤正确.
∴其中正确结论的序号是:①④⑤.
故选:A.
11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;
③2OH+DH=BD;④BG=DG;⑤.
其中正确的结论是( )
A.
①②③
B.
①②④
C.
①②⑤
D.
②④⑤
解答:
解:①由∠ABC=90°,△BEC为等边三角形,△ABE为等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;
②由△EGD≌△DFE,EF=GD,再由△HDE为等腰三角形,∠DEH=30°,得出△HGF为等腰三角形,∠HFG=30°,可求得GF∥DE,此结论正确;
③由图可知2(OH+HD)=2OD=BD,所以2OH+DH=BD此结论不正确;
④如图,过点G作GM⊥CD垂足为M,GN⊥BC垂足为N,设GM=x,则GN=x,进一步利用勾股定理求得GD=x,BG=x,得出BG=GD,此结论不正确;
⑤由图可知△BCE和△BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE的高为(x+x)和△BCG的高为x,因此S△BCE:S△BCG=(x+x):x=,此结论正确;
故正确的结论有①②⑤.
故选C.
12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有( )
A.
①②③
B.
①②④
C.
①③④
D.
①②③④
解答:
解:(1)连接FC,延长HF交AD于点L,
∵BD为正方形ABCD的对角线,
∴∠ADB=∠CDF=45°.
∵AD=CD,DF=DF,
∴△ADF≌△CDF.
∴FC=AF,∠ECF=∠DAF.
∵∠ALH+∠LAF=90°,
∴∠LHC+∠DAF=90°.
∵∠ECF=∠DAF,
∴∠FHC=∠FCH,
∴FH=FC.
∴FH=AF.
(2)∵FH⊥AE,FH=AF,
∴∠HAE=45°.
(3)连接AC交BD于点O,可知:BD=2OA,
∵∠AFO+∠GFH=∠GHF+∠GFH,
∴∠AFO=∠GHF.
∵AF=HF,∠AOF=∠FGH=90°,
∴△AOF≌△FGH.
∴OA=GF.
∵BD=2OA,
∴BD=2FG.
(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,
根据△MEC≌△CIM,可得:CE=IM,
同理,可得:AL=HE,
∴HE+HC+EC=AL+LI+IM=AM=8.
∴△CEH的周长为8,为定值.
故(1)(2)(3)(4)结论都正确.
故选D.
13.(2013•钦州模拟)正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为( )
A.
10
B.
12
C.
14
D.
16
解答:
解:如图,连DB,GE,FK,则DB∥GE∥FK,
在梯形GDBE中,S△DGE=S△GEB(同底等高的两三角形面积相等),
同理S△GKE=S△GFE.
∴S阴影=S△DGE+S△GKE,
=S△GEB+S△GEF,
=S正方形GBEF,
=4×4
=16
故选D.
二.填空题(共16小题)
14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有 ①②④ .
解答:
解:∵梯形ABCD中,AD∥BC,EA⊥AD,
∴AE⊥BC,即②正确.
∵∠MBE=45°,
∴BE=ME.
在△ABE与△CME中,
∵∠BAE=∠MCE,∠AEB=∠CEM=90°,BE=ME,
∴△ABE≌△CME,
∴AB=CM,即①正确.
∵∠MCE=∠BAE=90°﹣∠ABE<90°﹣∠MBE=45°,
∴∠MCE+∠MBC<90°,
∴∠BMC>90°,即③⑤错误.
∵∠AEB=∠CEM=90°,F、G分别是AB、CM的中点,
∴EF=AB,EG=CM.
又∵AB=CM,
∴EF=EG,即④正确.
故正确的是①②④.
15.(2012•门头沟区一模)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= 2476099 .第n次操作得到△AnBnCn,则△AnBnCn的面积Sn= 19n .
解答:
解:连接A1C;
S△AA1C=3S△ABC=3,
S△AA1C1=2S△AA1C=6,
所以S△A1B1C1=6×3+1=19;
同理得S△A2B2C2=19×19=361;
S△A3B3C3=361×19=6859,
S△A4B4C4=6859×19=130321,
S△A5B5C5=130321×19=2476099,
从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n次后,得到△AnBnCn,
则其面积Sn=19n•S1=19n故答案是:2476099;19n.
16.(2009•黑河)如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为 ()n﹣1 .
解答:
解:连接DB,
∵四边形ABCD是菱形,
∴AD=AB.AC⊥DB,
∵∠DAB=60°,
∴△ADB是等边三角形,
∴DB=AD=1,
∴BM=,
∴AM==,
∴AC=,
同理可得AC1=AC=()2,AC2=AC1=3=()3,
按此规律所作的第n个菱形的边长为()n﹣1
故答案为()n﹣1.
17.(2012•通州区二模)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2; …;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012= .
解答:
解:∵∠ABC与∠ACD的平分线交于点A1,
∴∠A1BC=∠ABC,∠A1CD=∠ACD,
根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,
∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠ABC),
整理得,∠A1=∠A=,
同理可得,∠A2=∠A1=×=,
…,
∠A2012=.
故答案为:.
18.(2009•湖州)如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,Dn,分别记△BD1E1,△BD2E2,△BD3E3,…,△BDnEn的面积为S1,S2,S3,…Sn.则Sn= S△ABC(用含n的代数式表示).
解答:
解:易知D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;
根据直角三角形的性质以及相似三角形的性质可知:D1E1=BC,CE1=AC,S1=S△ABC;
∴在△ACB中,D2为其重心,
∴D2E1=BE1,
∴D2E2=BC,CE2=AC,S2=S△ABC,
∵D2E2:D1E1=2:3,D1E1:BC=1:2,
∴BC:D2E2=2D1E1:D1E1=3,
∴CD3:CD2=D3E3:D2E2=CE3:CE2=3:4,
∴D3E3=D2E2=×BC=BC,CE3=CE2=×AC=AC,S3=S△ABC…;
∴Sn=S△ABC.
19.(2011•丰台区二模)已知:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、Dn,分别记△BD1E1、△BD2E2、△BD3E3、…、△BDnEn的面积为S1、S2、S3、…Sn.设△ABC的面积是1,则S1= ,Sn= (用含n的代数式表示).
解答:
解:易知D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;
∴S1=S△D1E1A=S△ABC,
根据直角三角形的性质以及相似三角形的性质可知:D1E1=BC,CE1=AC,S1=S△ABC;
∴在△ACB中,D2为其重心,
又D1E1为三角形的中位线,∴D1E1∥BC,
∴△D2D1E1∽△CD2B,且相似比为1:2,
即=,
∴D2E1=BE1,
∴D2E2=BC,CE2=AC,S2=S△ABC,
∴D3E3=BC,CE3=AC,S3=S△ABC…;
∴Sn=S△ABC.
故答案为:,.
20.(2013•路北区三模)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 2.4 .
解答:
解:∵四边形AFPE是矩形
∴AM=AP,AP⊥BC时,AP最短,同样AM也最短
∴当AP⊥BC时,△ABP∽△CAB
∴AP:AC=AB:BC
∴AP:8=6:10
∴AP最短时,AP=4.8
∴当AM最短时,AM=AP÷2=2.4.
点评:
解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.
21.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= ,= .
解答:
解:在Rt△ABC中,AC=3,BC=4,
∴AB=,
又因为CA1⊥AB,
∴AB•CA1=AC•BC,
即CA1===.
∵C4A5⊥AB,
∴△BA5C4∽△BCA,
∴,
∴==.
所以应填和.
22.(2013•沐川县二模)如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为 ;面积小于2011的阴影三角形共有 6 个.
解答:
解:由题意得,△A2B1B2∽△A3B2B3,
∴==,==,
又∵A1B1∥A2B2∥A3B3,
∴===,==,
∴OA1=A1A2,B1B2=B2B3
继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…
又△A2B1B2,△A3B2B3的面积分别为1、4,
∴S△A1B1A2=,S△A2B2A3=2,
继而可推出S△A3B3A4=8,S△A,4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,
故可得小于2011的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.
故答案是:;6.
23.(2010•鲤城区质检)如图,已知点A1(a,1)在直线l:上,以点A1为圆心,以为半径画弧,交x轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在x轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在x轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a= ;②△A4B4B5的面积是 .
解答:
解:如图所示:
①将点A1(a,1)代入直线1中,可得,
所以a=.
②△A1B1B2的面积为:S==;
因为△OA1B1∽△OA2B2,所以2A1B1=A2B2,又因为两线段平行,可知△A1B1B2∽△A2B2B3,所以△A2B2B3的面积为S1=4S;
以此类推,△A4B4B5的面积等于64S=.
24.(2013•松北区二模)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于 16 .
解答:
解:如图,过O点作OG垂直AC,G点是垂足.
∵∠BAC=∠BOC=90°,
∴ABCO四点共圆,
∴∠OAG=∠OBC=45°
∴△AGO是等腰直角三角形,
∴2AG2=2GO2=AO2==72,
∴OG=AG=6,
∵∠BAH=∠0GH=90°,∠AHB=∠OHG,
∴△ABH∽△GOH,
∴AB/OG=AH/(AG﹣AH),
∵AB=4,OG=AG=6,
∴AH=2.4
在直角△OHC中,∵HG=AG﹣AH=6﹣2.4=3.6,OG又是斜边HC上的高,
∴OG2=HG×GC,
而OG=6,GH=3.6,
∴GC=10.
∴AC=AG+GC=6+10=16.
故AC边的长是16.
25.(2007•淄川区二模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于 .
解答:
解:∵∠1=∠2,∠3=∠4,
∴∠2+∠3=90°,
∴∠HEF=90°,
同理四边形EFGH的其它内角都是90°,
∴四边形EFGH是矩形.
∴EH=FG(矩形的对边相等);
又∵∠1+∠4=90°,∠4+∠5=90°,
∴∠1=∠5(等量代换),
同理∠5=∠7=∠8,
∴∠1=∠8,
∴Rt△AHE≌Rt△CFG,
∴AH=CF=FN,
又∵HD=HN,
∴AD=HF,
在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF=,
∴HF=5,
又∵HE•EF=HF•EM,
∴EM=,
又∵AE=EM=EB(折叠后A、B都落在M点上),
∴AB=2EM=,
∴AD:AB=5:=.
故答案为:.
26.(2009•泰兴市模拟)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= 3 AB.
解答:
解:∵以AD、AB、BC为斜边向外作等腰直角三角形,
其面积分别是S1、S2、S3,
∴S1=,S2=,S3=
∵S1+S3=4S2,
∴AD2+BC2=4AB2
过点B作BK∥AD交CD于点K,
∵AB∥CD
∴AB=DK,AD=BK,∠BKC=∠ADC
∵∠ADC+∠BCD=90°
∴∠BKC+∠BCD=90°
∴BK2+BC2=CK2
∴AD2+BC2=CK2
∴CK2=4AB2
∴CK=2AB
∴CD=3AB.
27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是 91 个.
解答:
解:观察图形,发现规律:图1中有1个菱形,图2中有1+22=5个菱形,图3中有5+32=14个菱形,图4中有14+42=30个菱形,则第5个图中菱形的个数是30+52=55,第6个图中菱形的个数是55+62=91个.
故答案为91.
28.(2012•贵港一模)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为 40 cm2.
解答:
解:如图,连接EF
∵△ADF与△DEF同底等高,
∴S△ADF=S△DEF
即S△ADF﹣S△DPF=S△DEF﹣S△DPF,
即S△APD=S△EPF=15cm2,
同理可得S△BQC=S△EFQ=25cm2,
∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.
故答案为40.
29.(2012•天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为 .
解答:
解:连接AE,BE,DF,CF.
∵以顶点A、B为圆心,1为半径的两弧交于点E,AB=1,
∴AB=AE=BE,
∴△AEB是等边三角形,
∴边AB上的高线为EN=,
延长EF交AB于N,并反向延长EF交DC于M,则E、F、M,N共线,
则EM=1﹣EN=1﹣,
∴NF=EM=1﹣,
∴EF=1﹣EM﹣NF=﹣1.
故答案为﹣1.
30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值范围.
解答:
解:连接AC.
∵AB=2,BC=4,
在△ABC中,根据三角形的三边关系,4﹣2<AC<2+4,即2<AC<6.
∴﹣6<﹣AC<﹣2,1<CD﹣AC<5,9<CD+AC<13,
在△ACD中,根据三角形的三边关系,得CD﹣AC<AD<CD+AC,
∴1<AD<13.
故AD的取值范围是1<AD<13.