- 722.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016年江苏省苏州市高新区中考数学一模试卷
一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)
1.(2分)如果x=2016,那么|x﹣4|的值是( )
A.±2012 B.2012 C.﹣2012 D.2014
2.(2分)下列计算正确的是( )
A.(a3)2=a5 B.a6÷a3=a2 C.(ab)2=a2b2 D.(a+b)2=a2+b2
3.(2分)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为( )
A.4.73×108 B.4.73×109 C.4.73×1010 D.4.73×1011
4.(2分)实数a在数轴上的位置如图所示,则化简后为( )
A.7 B.﹣7 C.2a﹣15 D.无法确定
5.(2分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为( )
A.20° B.40° C.30° D.25°
6.(2分)下列说法中正确的是( )
A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为
B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件
C.“同位角相等”这一事件是不可能事件
D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件
7.(2分)如图是某几何体的三视图及相关数据,则该几何体的侧面积是( )
A.acπ B.bcπ C. D.
8.(2分)图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为( )
A.3:2 B.5:3 C.8:5 D.13:8
9.(2分)如图,直线l:y=﹣x﹣与坐标轴交于A,C两点,过A,O,C三点作⊙O1,点E为劣弧AO上一点,连接EC,EA,EO,当点E在劣弧AO上运动时(不与A,O两点重合),的值是否发生变化?( )
A. B. C.2 D.变化
10.(2分)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是( )
A.﹣2<m< B.﹣3<m<﹣ C.﹣3<m<﹣2 D.﹣3<m<﹣
二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)
11.(3分)函数y=的自变量x取值范围是 .
12.(3分)分解因式:2b2﹣8b+8= .
13.(3分)一组数据﹣1,3,1,2,b的唯一众数为﹣1,则这组数据的中位数为 .
14.(3分)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为 .
15.(3分)如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为 .
16.(3分)如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO= 度.
17.(3分)在⊙O的内接四边形ABCD中,AB=6,AD=10,∠BAD=60°,点C为弧BD的中点,则AC的长是 .
18.(3分)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①AD=BE=5;②当0<t≤5时,y=t2;③cos∠ABE=;④当t=秒时,△ABE∽△QBP;⑤当△BPQ的面积为4cm2时,时间t的值是或; 其中正确的结论是 .
三、解答题(本大题共10小题,共76.解答时应写出文字说明、证明过程或演算步骤.)
19.(5分)计算:(π﹣)0+()﹣2+﹣9tan30°.
20.(5分)解方程:
21.(7分)已知A=﹣
(1)化简A;
(2)当x满足不等式组,且x为整数时,求A的值.
22.(7分)如图,已知△ABC,按如下步骤作图:
①以A为圆心,AB长为半径画弧;
②以C为圆心,CB长为半径画弧,两弧相交于点D;
③连接BD,与AC交于点E,连接AD,CD.
(1)求证:△ABC≌△ADC;
(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.
23.(8分)某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
(1)则样本容量是 ,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;
(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.
发言次数n
A
0≤n<3
B
3≤n<6
C
6≤n<9
D
9≤n<12
E
12≤n<15
F
15≤n<18
24.(8分)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求⊙O的半径OD;
(2)求证:AE是⊙O的切线;
(3)求图中两部分阴影面积的和.
25.(8分)如图,已知:A(m,4)是一次函数y=kx+b与反比例函数y=的公共点
(1)若该一次函数分别与x轴y轴交于E、F两点,且直角△EOF的外心为点A,试求它的解析式;
(2)在第(1)问的条件下,在y=的图象上另取一点B,作BK⊥x轴于K,若在y轴上存在点G,使得△GFA和△BOK的面积相等,试求点G的坐标?
(3)若(2)中的点B的坐标为(m,3m+6)(其中m>0),在线段BK上存在一点Q,使得△OQK的面积是,设Q点的纵坐标为n,求4n2﹣2n+9的值.
26.(8分)如图1,图2,是一款家用的垃圾桶,踏板AB(与地面平行)或绕定点P(固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持AP=A′P,BP=B′P).通过向下踩踏点A到A′(与地面接触点)使点B上升到点B′,与此同时传动杆BH运动到B'H'的位置,点H绕固定点D旋转(DH为旋转半径)至点H',从而使桶盖打开一个张角∠HDH′.如图3,桶盖打开后,传动杆H′B′所在的直线分别与水平直线AB、DH垂直,垂足为点M、C,设H′C=B′M.测得AP=6cm,PB=12cm,DH′=8cm.要使桶盖张开的角度∠HDH'不小于60°,那么踏板AB离地面的高度至少等于多少cm?(结果保留两位有效数字)(参考数据:≈1.41,≈1.73)
27.(10分)如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.
(1)求线段AC的长度;
(2)当点Q从B点向A点运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:
①当l经过点A时,射线QP交AD于点E,求AE的长;
②当l经过点B时,求t的值.
28.(10分)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点.现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.
(1)如图1,若该抛物线经过原点O,且a=﹣.
①求点D的坐标及该抛物线的解析式;
②连结CD.问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由;
(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.
2016年江苏省苏州市高新区中考数学一模试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)
1.(2分)如果x=2016,那么|x﹣4|的值是( )
A.±2012 B.2012 C.﹣2012 D.2014
【解答】解:∵x=2016,
∴|x﹣4|=|2016﹣4|=|2012|=2012.
故选:B.
2.(2分)下列计算正确的是( )
A.(a3)2=a5 B.a6÷a3=a2 C.(ab)2=a2b2 D.(a+b)2=a2+b2
【解答】解:A、底数不变指数相乘,故A错误;
B、底数不变指数相减,故B错误;
C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;
D、和的平方等于平方和加积的二倍,故D错误;
故选:C.
3.(2分)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为( )
A.4.73×108 B.4.73×109 C.4.73×1010 D.4.73×1011
【解答】解:47.3亿=47 3000 0000=4.73×109,
故选:B.
4.(2分)实数a在数轴上的位置如图所示,则
化简后为( )
A.7 B.﹣7 C.2a﹣15 D.无法确定
【解答】解:从实数a在数轴上的位置可得,
5<a<10,
所以a﹣4>0,
a﹣11<0,
则,
=a﹣4+11﹣a,
=7.
故选A.
5.(2分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为( )
A.20° B.40° C.30° D.25°
【解答】解:由三角形的外角性质,∠3=∠1+∠B=70°,
∵a∥b,∠DCB=90°,
∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.
故选:A.
6.(2分)下列说法中正确的是( )
A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为
B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件
C.“同位角相等”这一事件是不可能事件
D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件
【解答】解:A、掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为,故A错误;
B、“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件,故B正确;
C、同位角相等是随机事件,故C错误;
D、“钝角三角形三条高所在直线的交点在三角形外部”这一事件是必然事件,故D错误;
故选:B.
7.(2分)如图是某几何体的三视图及相关数据,则该几何体的侧面积是( )
A.acπ B.bcπ C. D.
【解答】解:由题意得底面直径为c,母线长为b,
∴几何体的侧面积为πc•b=πbc,
故选D.
8.(2分)图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为( )
A.3:2 B.5:3 C.8:5 D.13:8
【解答】解:如图,过点D作DE⊥BC于点E;
由题意得:S△ABD=S△PBD=30,
∴S△DPC=80﹣30﹣30=20,
∴=,
由题意得:AB=BP,
∴AB:PC=3:2,
故选A.
9.(2分)如图,直线l:y=﹣x﹣与坐标轴交于A,C两点,过A,O,C三点作⊙O1,点E为劣弧AO上一点,连接EC,EA,EO,当点E在劣弧AO上运动时(不与A,O两点重合),的值是否发生变化?( )
A. B. C.2 D.变化
【解答】解:对于直线l:y=﹣x﹣,
令x=0,得到y=﹣;令y=0,得到x=﹣,
∴OA=OC,又∠AOC=90°,
∴△OAC为圆内接等腰直角三角形,AC为直径,
在CE上截取CM=AE,连接OM,
∵在△OAE和△OCM中,
,
∴△OAE≌△OCM(SAS),
∴∠AOE=∠COM,OM=OE,
∵∠AOC=∠AOM+∠MOC=90°,∠MOE=∠AOE+∠AOM,
∴∠MOE=90°,
∴△OME为等腰直角三角形,
∴ME=EO,
又∵ME=EC﹣CM=EC﹣AE,
∴EC﹣AE=EO,即=.
故选:A.
10.(2分)如图,抛物线y=﹣2x2+
8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是( )
A.﹣2<m< B.﹣3<m<﹣ C.﹣3<m<﹣2 D.﹣3<m<﹣
【解答】解:令y=﹣2x2+8x﹣6=0,
即x2﹣4x+3=0,
解得x=1或3,
则点A(1,0),B(3,0),
由于将C1向右平移2个长度单位得C2,
则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),
当y=x+m1与C2相切时,
令y=x+m1=y=﹣2(x﹣4)2+2,
即2x2﹣15x+30+m1=0,
△=﹣8m1﹣15=0,
解得m1=﹣,
当y=x+m2过点B时,
即0=3+m2,
m2=﹣3,
当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,
故选:D.
二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)
11.(3分)函数y=的自变量x取值范围是 x≤3 .
【解答】解:根据题意得:3﹣x≥0,
解得:x≤3.
故答案为:x≤3.
12.(3分)分解因式:2b2﹣8b+8= 2(b﹣2)2 .
【解答】解:原式=2(b2﹣4b+4)
=2(b﹣2)2.
故答案为:2(b﹣2)2.
13.(3分)一组数据﹣1,3,1,2,b的唯一众数为﹣1,则这组数据的中位数为 1 .
【解答】解:∵这组数据﹣1,5,1,2,b的唯一众数为﹣1,
∴b=﹣1,
这组数据按照从小到大的顺序排列为:﹣1,﹣1,1,2,5,
则中位数为:1.
故答案为:1
14.(3分)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为 .
【解答】解:,
①×2﹣②得
﹣8y=1,
y=﹣,
把y=﹣代入②得
2x﹣=5,
x=,
x2﹣4y2=()=,
故答案为:.
15.(3分)如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为 5 .
【解答】解:如图,连接AA′、BB′.
∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,
∴点A′的纵坐标是4.
又∵点A的对应点在直线y=x上一点,
∴4=x,解得x=5.
∴点A′的坐标是(5,4),
∴AA′=5.
∴根据平移的性质知BB′=AA′=5.
故答案为:5.
16.(3分)如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO= 25 度.
【解答】解:∵四边形ABCD是菱形,
∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH=BD=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO==25°,
故答案为:25.
17.(3分)在⊙O的内接四边形ABCD中,AB=6,AD=10,∠BAD=60°,点C为弧BD的中点,则AC的长是 .
【解答】解法一、∵A、B、C、D四点共圆,∠BAD=60°,
∴∠BCD=180°﹣60°=120°,
∵∠BAD=60°,AC平分∠BAD,
∴∠CAD=∠CAB=30°,
如图1中,将△ACD绕点C逆时针旋转120°得△CBE,
则∠E=∠CAD=30°,BE=AD=10,AC=CE,
∴∠ABC+∠EBC=(180°﹣CAB+∠ACB)+(180°﹣∠E﹣∠BCE)=180°,
∴A、B、E三点共线,
过C作CM⊥AE于M,
∵AC=CE,
∴AM=EM=×(6+10)=8,
在Rt△AMC中,AC===;
解法二、如图2中,过C作CE⊥AB于E,CF⊥AD于F,
则∠E=∠CFD=∠CFA=90°,
∵点C为弧BD的中点,
∴=,
∴∠BAC=∠DAC,BC=CD,
∵CE⊥AB,CF⊥AD,
∴CE=CF,
∵A、B、C、D四点共圆,
∴∠D=∠CBE,
在△CBE和△CDF中
,
∴△CBE≌△CDF,
∴BE=DF,
在△AEC和△AFC中,
,
∴△AEC≌△AFC,
∴AE=AF,
设BE=DF=x,
∵AB=6,AD=10,
∴AE=AF=x+3,
∴10﹣x=6+x,
解得:x=2,
即AE=8,
∴AC==,
故答案为 .
18.(3分)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①AD=BE=5;②当0<t≤5时,y=t2;③cos∠ABE=;④当t=秒时,△ABE∽△QBP;⑤当△BPQ的面积为4cm2时,时间t的值是或; 其中正确的结论是 ②④ .
【解答】解:根据图(2)可得,
当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度分别是1cm/秒、2cm/秒
∴BC=BE=10,
∴AD=BC=10.
∴①错误;
又∵从M到N的变化是4,
∴ED=4,
∴AE=AD﹣ED=10﹣4=6.
∵AD∥BC,
∴∠EBQ=∠AEB,
∴cos∠EBQ=cos∠AEB=,
故③错误;
如图1,过点P作PF⊥BC于点F,
∵AD∥BC,
∴∠EBQ=∠AEB,
∴sin∠EBQ=sin∠AEB==,
∴PF=PBsin∠EBQ=t,
∴当0<t≤5时,y=BQ×PF=×2t×t=t2,
故②正确,
如图4,
当t=时,点P在CD上,
∴PD=﹣BE﹣ED=﹣10﹣4=,
PQ=CD﹣PD=8﹣=,
∴,,
∴
∵∠A=∠Q=90°,
∴△ABE∽△QBP,
故④正确.
由②知,y=t2
当y=4时,t2=4,
从而,
故⑤错误
综上所述,正确的结论是②④.
三、解答题(本大题共10小题,共76.解答时应写出文字说明、证明过程或演算步骤.)
19.(5分)计算:(π﹣)0+()﹣2+﹣9tan30°.
【解答】解:原式=1+9+3﹣9×
=1+9+3﹣3
=10.
20.(5分)解方程:
【解答】解:方程两边都乘以(x﹣1),得
3x+2=x﹣1,解得:.
检验:当x=时,x﹣1≠0,
∴是原方程的根.
21.(7分)已知A=﹣
(1)化简A;
(2)当x满足不等式组,且x为整数时,求A的值.
【解答】解:(1)A=﹣
=﹣
=﹣
=
(2)∵
∴
∴1≤x<3,
∵x为整数,
∴x=1或x=2,
①当x=1时,
∵x﹣1≠0,
∴A=中x≠1,
∴当x=1时,A=无意义.
②当x=2时,
A==.
22.(7分)如图,已知△ABC,按如下步骤作图:
①以A为圆心,AB长为半径画弧;
②以C为圆心,CB长为半径画弧,两弧相交于点D;
③连接BD,与AC交于点E,连接AD,CD.
(1)求证:△ABC≌△ADC;
(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.
【解答】(1)证明:在△ABC与△ADC中,
,
∴△ABC≌△ADC(SSS);
(2)解:设BE=x,
∵∠BAC=30°,
∴∠ABE=60°,
∴AE=tan60°•x=x,
∵△ABC≌△ADC,
∴CB=CD,∠BCA=∠DCA,
∵∠BCA=45°,
∴∠BCA=∠DCA=45°,
∴∠CBD=∠CDB=45°,
∴CE=BE=x,
∴x+x=4,
∴x=2﹣2,
∴BE=2﹣2.
23.(8分)某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
(1)则样本容量是 50 ,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;
(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.
发言次数n
A
0≤n<3
B
3≤n<6
C
6≤n<9
D
9≤n<12
E
12≤n<15
F
15≤n<18
【解答】解:(1)∵B、E两组发言人数的比为5:2,E占8%,
∴B组所占的百分比是20%,
∵B组的人数是10,
∴样本容量为:10÷20%=50,
∴C组的人数是50×30%=15(人),
∴F组的人数是50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=5(人),
补图如下:
(2)∵F组的人数是1﹣6%﹣8%﹣30%﹣26%﹣20%=10%,
∴发言次数不少于12的次数所占的百分比是:8%+10%=18%,
∴全年级500人中,在这天里发言次数不少于12的次数为:500×18%=90(次).
(3)∵A组发言的学生为:50×6%=3人,有1位女生,
∴A组发言的有2位男生,
∵E组发言的学生:4人,
∴有2位女生,2位男生.
∴由题意可画树状图为:
∴共有12种情况,所抽的两位学生恰好是一男一女的情况有6种,
∴所抽的两位学生恰好是一男一女的概率为=.
24.(8分)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求⊙O的半径OD;
(2)求证:AE是⊙O的切线;
(3)求图中两部分阴影面积的和.
【解答】解:(1)∵AB与圆O相切,
∴OD⊥AB,
在Rt△BDO中,BD=2,tan∠BOD==,
∴OD=3;
(2)连接OE,
∵AE=OD=3,AE∥OD,
∴四边形AEOD为平行四边形,
∴AD∥EO,
∵DA⊥AE,
∴OE⊥AC,
又∵OE为圆的半径,
∴AE为圆O的切线;
(3)∵OD∥AC,
∴=,即=,
∴AC=7.5,
∴EC=AC﹣AE=7.5﹣3=4.5,
∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG
=×2×3+×3×4.5﹣
=3+﹣
=.
25.(8分)如图,已知:A(m,4)是一次函数y=kx+b与反比例函数y=的公共点
(1)若该一次函数分别与x轴y轴交于E、F两点,且直角△EOF的外心为点A,试求它的解析式;
(2)在第(1)问的条件下,在y=的图象上另取一点B,作BK⊥x轴于K,若在y轴上存在点G,使得△GFA和△BOK的面积相等,试求点G的坐标?
(3)若(2)中的点B的坐标为(m,3m+6)(其中m>0),在线段BK上存在一点Q,使得△OQK的面积是,设Q点的纵坐标为n,求4n2﹣2n+9的值.
【解答】解:(1)∵A(m,4)在反比例函数y=上,
∴4m=12,
解得m=3,
∴A(3,4).
∵点A是直角△EOF的外心,
∴点A是线段EF的中点,
∴E(6,0),F(0,8).
∵点E(6,0),F(0,8)在直线y=kx+b上,
∴,
解得.
∴直线的解析式为y=﹣x+8;
(2)∵BK⊥x轴,
∴S△BOK==6,
∴S△GFA=S△BOK=6,
∴GF•3=6,
∴GF=4.
∵F的坐标为(0,8),
∴G的坐标为(0,12)或(0,4);
(3)∵B(m,3m+6)在反比例函数y=的图象上,
∴m(3m+6)=12,
解得m1=﹣1,m2=﹣﹣1.
∵m>0,
∴m=﹣1.
∵S△OQK=mn=,
∴n===,
∴4n=+1,
∴4n﹣1=,
∴16n2﹣8n+1=5,
∴4n2﹣2n=1,
∴4n2﹣2n+9=10.
26.(8分)如图1,图2,是一款家用的垃圾桶,踏板AB(与地面平行)或绕定点P(固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持AP=A′P,BP=B′P).通过向下踩踏点A到A′(与地面接触点)使点B上升到点B′,与此同时传动杆BH运动到B'H'的位置,点H绕固定点D旋转(DH为旋转半径)至点H',从而使桶盖打开一个张角∠HDH′.如图3,桶盖打开后,传动杆H′B′所在的直线分别与水平直线AB、DH垂直,垂足为点M、C,设H′C=B′M.测得AP=6cm,PB=12cm,DH′=8cm.要使桶盖张开的角度∠HDH'不小于60°,那么踏板AB离地面的高度至少等于多少cm?(结果保留两位有效数字)(参考数据:≈1.41,≈1.73)
【解答】解:作A′N⊥AB于N点.
在Rt△H′CD中,
若∠HDH′不小于60°,
则,
即H'C≥H'D=4.
∵B'M=H'C≥4,
又∵Rt△A′NP∽Rt△B′MP,
∴=,
∴A′N=≥=2≈3.5cm.
∴踏板AB离地面的高度至少等于3.5cm.
27.(10分)如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.
(1)求线段AC的长度;
(2)当点Q从B点向A点运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为l:
①当l经过点A时,射线QP交AD于点E,求AE的长;
②当l经过点B时,求t的值.
【解答】解:(1)∵四边形ABCD是矩形,
∴∠ABC=90°,
在Rt△ABC中,由勾股定理得:;
(2)如图1,
过点P作PH⊥AB于点H,AP=t,AQ=3﹣t,
则∠AHP=∠ABC=90°,
∵∠PAH=∠CAB,
∴△AHP∽△ABC,
∴=,
∵AP=t,AC=5,BC=4,
∴PH=,
∴S=•(3﹣t)•t,
即S=﹣t2+t,t的取值范围是:0<t<3.
(3)①如图2,
∵线段PQ的垂直平分线为l经过点A,
∴AP=AQ,
∴3﹣t=t,
∴t=1.5,
∴AP=AQ=1.5,
延长QP交AD于点E,过点Q作QO∥AD交AC于点O,
∴△AQO∽△ABC,
∴,
∴,,
∴PO=AO﹣AP=1,
∵OQ∥BC∥AD,
∴△APE∽△OPQ,
∴,
∴.
②如图③,
(i)当点Q从B向A运动时l经过点B,
BQ=BP=AP=t,∠QBP=∠QAP,
∵∠QBP+∠PBC=90°,∠QAP+∠PCB=90°
∴∠PBC=∠PCB,
∴CP=BP=AP=t
∴CP=AP=AC=×5=2.5,
∴t=2.5;
(ⅱ)如图4,当点Q从A向B运动时l经过点B,
BP=BQ=3﹣(t﹣3)=6﹣t,AP=t,PC=5﹣t,
过点P作PG⊥CB于点G,
则PG∥AB,
∴△PGC∽△ABC,
∴,
∴PG=•AB=(5﹣t),CG=•BC=(5﹣t),
∴BG=4﹣=
由勾股定理得BP2=BG2+PG2,即,
解得.
28.(10分)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点.现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.
(1)如图1,若该抛物线经过原点O,且a=﹣.
①求点D的坐标及该抛物线的解析式;
②连结CD.问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由;
(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.
【解答】解:(1)①过点D作DF⊥x轴于点F,如图1,
∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,
∴∠DBF=∠BAO,
又∵∠AOB=∠BFD=90°,AB=BD,
在△AOB和△BFD中,
,
∴△AOB≌△BFD(AAS)
∴DF=BO=1,BF=AO=2,
∴D的坐标是(3,1),
根据题意,得a=﹣,c=0,且a×32+b×3+c=1,
∴b=,
∴该抛物线的解析式为y=﹣x2+x;
②∵点A(0,2),B(1,0),点C为线段AB的中点,
∴C(,1),
∵C、D两点的纵坐标都为1,
∴CD∥x轴,
∴∠BCD=∠ABO
∴∠BAO与∠BCD互余,
要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,
设P的坐标为(x,﹣x2+x),
(Ⅰ)当P在x轴的上方时,过P作PG⊥x轴于点G,如图2,
则tan∠POB=tan∠BAO,即=,
∴=,解得x1=0(舍去),x2=,
∴﹣x2+x=,
∴P点的坐标为(,);
(Ⅱ)当P在x轴的下方时,过P作PG⊥x轴于点G,如图3,
则tan∠POB=tan∠BAO,即p,
∴,
解得x1=0(舍去),x2=,
∴x2+x=﹣,
∴P点的坐标为(,﹣);
综上,在抛物线上存在点P(,)或(,﹣),使得∠POB与∠BCD互余.
(2)如图3,图4,
∵D(3,1),E(1,1),
抛物线y=ax2+bx+c过点E、D,代入可得,
解得,
所以y=ax2﹣4ax+3a+1.
分两种情况:
①当抛物线y=ax2+bx+c开口向下时,若满足∠QOB与∠BCD互余且符合条件的Q点的个数是4个,则点Q在x轴的上、下方各有两个,
(i)当点Q在x轴的上方时,直线OQ与抛物线有两个交点,满足条件的Q有2个;
(ii)当点Q在x轴的下方时,要使直线OQ与抛物线y=ax2+bx+c有两个交点,抛物线y=ax2+bx+c与x轴的交点必须在x轴的正半轴上,与y轴的交点在y轴的负半轴,所以3a+1<0,解得a<﹣;
②当抛物线y=ax2+bx+c开口向上时,点Q在x轴的上、下方各有两个,
(i)当点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q有两个;
(ii)当点Q在x轴的下方时,要使直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q才两个.
根据(2)可知,要使得∠QOB与∠BCD互余,则必须∠QOB=∠BAO,
∴tan∠QOB=tan∠BAO==,此时直线OQ的斜率为﹣,则直线OQ的解析式为y=﹣x,要使直线OQ与抛物线y=ax2+bx+c有两个交点,所以方程ax2﹣4ax+3a+1=﹣x有两个不相等的实数根,所以△=(﹣4a+)2﹣4a(3a+1)
>0,即4a2﹣8a+>0,解得a>(a<舍去)
综上所示,a的取值范围为a<﹣或a>.