- 608.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年河南省中考数学试卷
一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)
1.(3.00分)﹣的相反数是( )
A.﹣ B. C.﹣ D.
2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )
A.2.147×102 B.0.2147×103 C.2.147×1010 D.0.2147×1011
3.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )
A.厉 B.害 C.了 D.我
4.(3.00分)下列运算正确的是( )
A.(﹣x2)3=﹣x5 B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=1
5.(3.00分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )
A.中位数是12.7% B.众数是15.3%
C.平均数是15.98% D.方差是0
6.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为( )
A. B.
C. D.
7.(3.00分)下列一元二次方程中,有两个不相等实数根的是( )
A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0
8.(3.00分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是( )
A. B. C. D.
9.(3.00分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为( )
A.(﹣1,2) B.(,2) C.(3﹣,2) D.(﹣2,2)
10.(3.00分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A. B.2 C. D.2
二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)
11.(3.00分)计算:|﹣5|﹣= .
12.(3.00分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为 .
13.(3.00分)不等式组的最小整数解是 .
14.(3.00分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为 .
15.(3.00分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为 .
三、计算题(本大题共8题,共75分,请认真读题)
16.(8.00分)先化简,再求值:(﹣1)÷,其中x=+1.
17.(9.00分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.
治理杨絮一一您选哪一项?(单选)
A.减少杨树新增面积,控制杨树每年的栽种量
B.调整树种结构,逐渐更换现有杨树
C.选育无絮杨品种,并推广种植
D.对雌性杨树注射生物干扰素,避免产生飞絮
E.其他
根据以上统计图,解答下列问题:
(1)本次接受调查的市民共有 人;
(2)扇形统计图中,扇形E的圆心角度数是 ;
(3)请补全条形统计图;
(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
18.(9.00分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.
(1)求反比例函数的解析式;
(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:
①四个顶点均在格点上,且其中两个顶点分别是点O,点P;
②矩形的面积等于k的值.
19.(9.00分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.
(1)求证:CE=EF;
(2)连接AF并延长,交⊙O于点G.填空:
①当∠D的度数为 时,四边形ECFG为菱形;
②当∠D的度数为 时,四边形ECOG为正方形.
20.(9.00分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.
如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)
21.(10.00分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:
销售单价x(元)
85
95
105
115
日销售量y(个)
175
125
75
m
日销售利润w(元)
875
1875
1875
875
(注:日销售利润=日销售量×(销售单价﹣成本单价))
(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;
(2)根据以上信息,填空:
该产品的成本单价是 元,当销售单价x= 元时,日销售利润w最大,最大值是 元;
(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
22.(10.00分)(1)问题发现
如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:
①的值为 ;
②∠AMB的度数为 .
(2)类比探究
如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠
OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.
23.(11.00分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.
(1)求抛物线的解析式;
(2)过点A的直线交直线BC于点M.
①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;
②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.
2018年河南省中考数学试卷
参考答案与试题解析
一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)
1.(3.00分)﹣的相反数是( )
A.﹣ B. C.﹣ D.
【解答】解:﹣的相反数是:.
故选:B.
2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )
A.2.147×102 B.0.2147×103 C.2.147×1010 D.0.2147×1011
【解答】解:214.7亿,用科学记数法表示为2.147×1010,
故选:C.
3.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )
A.厉 B.害 C.了 D.我
【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“的”与“害”是相对面,
“了”与“厉”是相对面,
“我”与“国”是相对面.
故选:D.
4.(3.00分)下列运算正确的是( )
A.(﹣x2)3=﹣x5 B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=1
【解答】解:A、(﹣x2)3=﹣x6,此选项错误;
B、x2、x3不是同类项,不能合并,此选项错误;
C、x3•x4=x7,此选项正确;
D、2x3﹣x3=x3,此选项错误;
故选:C.
5.(3.00分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )
A.中位数是12.7% B.众数是15.3%
C.平均数是15.98% D.方差是0
【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,
故中位数是:15.3%,故此选项错误;
B、众数是15.3%,正确;
C、(15.3%+12.7%+15.3%+14.5%+17.1%)
=14.98%,故选项C错误;
D、∵5个数据不完全相同,
∴方差不可能为零,故此选项错误.
故选:B.
6.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为( )
A. B.
C. D.
【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.
故选:A.
7.(3.00分)下列一元二次方程中,有两个不相等实数根的是( )
A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0
【解答】解:A、x2+6x+9=0
△=62﹣4×9=36﹣36=0,
方程有两个相等实数根;
B、x2=x
x2﹣x=0
△=(﹣1)2﹣4×1×0=1>0
两个不相等实数根;
C、x2+3=2x
x2﹣2x+3=0
△=(﹣2)2﹣4×1×3=﹣8<0,
方程无实根;
D、(x﹣1)2+1=0
(x﹣1)2=﹣1,
则方程无实根;
故选:B.
8.(3.00分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“
”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是( )
A. B. C. D.
【解答】解:令3张用A1,A2,A3,表示,用B表示,
可得:
,
一共有12种可能,两张卡片正面图案相同的有6种,
故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.
故选:D.
9.(3.00分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为( )
A.(﹣1,2) B.(,2) C.(3﹣,2) D.(﹣2,2)
【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),
∴AH=1,HO=2,
∴Rt△AOH中,AO=,
由题可得,OF平分∠AOB,
∴∠AOG=∠EOG,
又∵AG∥OE,
∴∠AGO=∠EOG,
∴∠AGO=∠AOG,
∴AG=AO=,
∴HG=﹣1,
∴G(﹣1,2),
故选:A.
10.(3.00分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A. B.2 C. D.2
【解答】解:过点D作DE⊥BC于点E
由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.
∴AD=a
∴
∴DE=2
当点F从D到B时,用s
∴BD=
Rt△DBE中,
BE=
∵ABCD是菱形
∴EC=a﹣1,DC=a
Rt△DEC中,
a2=22+(a﹣1)2
解得a=
故选:C.
二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)
11.(3.00分)计算:|﹣5|﹣= 2 .
【解答】解:原式=5﹣3
=2.
故答案为:2.
12.(3.00分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为 140° .
【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,
∴∠EOB=90°,
∵∠EOD=50°,
∴∠BOD=40°,
则∠BOC的度数为:180°﹣40°=140°.
故答案为:140°.
13.(3.00分)不等式组的最小整数解是 ﹣2 .
【解答】解:
∵解不等式①得:x>﹣3,
解不等式②得:x≤1,
∴不等式组的解集为﹣3<x≤1,
∴不等式组的最小整数解是﹣2,
故答案为:﹣2.
14.(3.00分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为 π .
【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,
∴∠ACA′=∠BCA′=45°,
∴∠BCB′=135°,
∴S阴==π.
15.(3.00分)如图,∠
MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为 4或4 .
【解答】解:当△A′EF为直角三角形时,存在两种情况:
①当∠A'EF=90°时,如图1,
∵△A′BC与△ABC关于BC所在直线对称,
∴A'C=AC=4,∠ACB=∠A'CB,
∵点D,E分别为AC,BC的中点,
∴D、E是△ABC的中位线,
∴DE∥AB,
∴∠CDE=∠MAN=90°,
∴∠CDE=∠A'EF,
∴AC∥A'E,
∴∠ACB=∠A'EC,
∴∠A'CB=∠A'EC,
∴A'C=A'E=4,
Rt△A'CB中,∵E是斜边BC的中点,
∴BC=2A'B=8,
由勾股定理得:AB2=BC2﹣AC2,
∴AB==4;
②当∠A'FE=90°时,如图2,
∵∠ADF=∠A=∠DFB=90°,
∴∠ABF=90°,
∵△A′BC与△ABC关于BC所在直线对称,
∴∠ABC=∠CBA'=45°,
∴△ABC是等腰直角三角形,
∴AB=AC=4;
综上所述,AB的长为4或4;
故答案为:4或4;
三、计算题(本大题共8题,共75分,请认真读题)
16.(8.00分)先化简,再求值:(﹣1)÷,其中x=+1.
【解答】解:当x=+1时,
原式=•
=1﹣x
=﹣
17.(9.00分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.
治理杨絮一一您选哪一项?(单选)
A.减少杨树新增面积,控制杨树每年的栽种量
B.调整树种结构,逐渐更换现有杨树
C.选育无絮杨品种,并推广种植
D.对雌性杨树注射生物干扰素,避免产生飞絮
E.其他
根据以上统计图,解答下列问题:
(1)本次接受调查的市民共有 2000 人;
(2)扇形统计图中,扇形E的圆心角度数是 28.8° ;
(3)请补全条形统计图;
(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,
故答案为:2000;
(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,
故答案为:28.8°;
(3)D选项的人数为2000×25%=500,
补全条形图如下:
(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).
18.(9.00分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.
(1)求反比例函数的解析式;
(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:
①四个顶点均在格点上,且其中两个顶点分别是点O,点P;
②矩形的面积等于k的值.
【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),
∴k=2×2=4,
∴反比例函数的解析式为y=;
(2)如图所示:
矩形OAPB、矩形OCDP即为所求作的图形.
19.(9.00分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.
(1)求证:CE=EF;
(2)连接AF并延长,交⊙O于点G.填空:
①当∠D的度数为 30° 时,四边形ECFG为菱形;
②当∠D的度数为 22.5° 时,四边形ECOG为正方形.
【解答】(1)证明:连接OC,如图,
∵CE为切线,
∴OC⊥CE,
∴∠OCE=90°,即∠1+∠4=90°,
∵DO⊥AB,
∴∠3+∠B=90°,
而∠2=∠3,
∴∠2+∠B=90°,
而OB=OC,
∴∠4=∠B,
∴∠1=∠2,
∴CE=FE;
(2)解:①当∠D=30°时,∠DAO=60°,
而AB为直径,
∴∠ACB=90°,
∴∠B=30°,
∴∠3=∠2=60°,
而CE=FE,
∴△CEF为等边三角形,
∴CE=CF=EF,
同理可得∠GFE=60°,
利用对称得FG=FC,
∵FG=EF,
∴△FEG为等边三角形,
∴EG=FG,
∴EF=FG=GE=CE,
∴四边形ECFG为菱形;
②当∠D=22.5°时,∠DAO=67.5°,
而OA=OC,
∴∠OCA=∠OAC=67.5°,
∴∠AOC=180°﹣67.5°﹣67.5°=45°,
∴∠AOC=45°,
∴∠COE=45°,
利用对称得∠EOG=45°,
∴∠COG=90°,
易得△OEC≌△OEG,
∴∠OEG=∠OCE=90°,
∴四边形ECOG为矩形,
而OC=OG,
∴四边形ECOG为正方形.
故答案为30°,22.5°.
20.(9.00分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.
如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)
【解答】解:在Rt△ACE中,
∵tan∠CAE=,
∴AE==≈≈21(cm)
在Rt△DBF中,
∵tan∠DBF=,
∴BF==≈=40(cm)
∵EF=EA+AB+BF≈21+90+40=151(cm)
∵CE⊥EF,CH⊥DF,DF⊥EF
∴四边形CEFH是矩形,
∴CH=EF=151cm
答:高、低杠间的水平距离CH的长为151cm.
21.(10.00分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:
销售单价x(元)
85
95
105
115
日销售量y(个)
175
125
75
m
日销售利润w(元)
875
1875
1875
875
(注:日销售利润=日销售量×(销售单价﹣成本单价))
(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;
(2)根据以上信息,填空:
该产品的成本单价是 80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是 2000 元;
(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
【解答】解;(1)设y关于x的函数解析式为y=kx+b,
,得,
即y关于x的函数解析式是y=﹣5x+600,
当x=115时,y=﹣5×115+600=25,
即m的值是25;
(2)设成本为a元/个,
当x=85时,875=175×(85﹣a),得a=80,
w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,
∴当x=100时,w取得最大值,此时w=2000,
故答案为:80,100,2000;
(3)设科技创新后成本为b元,
当x=90时,
(﹣5×90+600)(90﹣b)≥3750,
解得,b≤65,
答:该产品的成本单价应不超过65元.
22.(10.00分)(1)问题发现
如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:
①的值为 1 ;
②∠AMB的度数为 40° .
(2)类比探究
如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.
【解答】解:(1)问题发现
①如图1,∵∠AOB=∠COD=40°,
∴∠COA=∠DOB,
∵OC=OD,OA=OB,
∴△COA≌△DOB(SAS),
∴AC=BD,
∴=1,
②∵△COA≌△DOB,
∴∠CAO=∠DBO,
∵∠AOB=40°,
∴∠OAB+∠ABO=140°,
在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,
故答案为:①1;②40°;
(2)类比探究
如图2,=,∠AMB=90°,理由是:
Rt△COD中,∠DCO=30°,∠DOC=90°,
∴,
同理得:,
∴,
∵∠AOB=∠COD=90°,
∴∠AOC=∠BOD,
∴△AOC∽△BOD,
∴=,∠CAO=∠DBO,
在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;
(3)拓展延伸
①点C与点M重合时,如图3,同理得:△AOC∽△BOD,
∴∠AMB=90°,,
设BD=x,则AC=x,
Rt△COD中,∠OCD=30°,OD=1,
∴CD=2,BC=x﹣2,
Rt△AOB中,∠OAB=30°,OB=,
∴AB=2OB=2,
在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
,
x2﹣x﹣6=0,
(x﹣3)(x+2)=0,
x1=3,x2=﹣2,
∴AC=3;
②点C与点M重合时,如图4,同理得:∠AMB=90°,,
设BD=x,则AC=x,
在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
+(x+2)2=
x2+x﹣6=0,
(x+3)(x﹣2)=0,
x1=﹣3,x2=2,
∴AC=2;
综上所述,AC的长为3或2.
23.(11.00分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.
(1)求抛物线的解析式;
(2)过点A的直线交直线BC于点M.
①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;
②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.
【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),
当y=0时,x﹣5=0,解得x=5,则B(5,0),
把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,
∴抛物线解析式为y=﹣x2+6x﹣5;
(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),
∵B(5,0),C(0,﹣5),
∴△OCB为等腰直角三角形,
∴∠OBC=∠OCB=45°,
∵AM⊥BC,
∴△AMB为等腰直角三角形,
∴AM=AB=×4=2,
∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,
∴PQ=AM=2,PQ⊥BC,
作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,
∴PD=PQ=×2=4,
设P(m,﹣m2+6m﹣5),则D(m,m﹣5),
当P点在直线BC上方时,
PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,
当P点在直线BC下方时,
PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,
综上所述,P点的横坐标为4或或;
②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,
∵M1A=M1C,
∴∠ACM1=∠CAM1,
∴∠AM1B=2∠ACB,
∵△ANB为等腰直角三角形,
∴AH=BH=NH=2,
∴N(3,﹣2),
易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),
设直线EM1的解析式为y=﹣x+b,
把E(,﹣)代入得﹣+b=﹣,解得b=﹣,
∴直线EM1的解析式为y=﹣x﹣,
解方程组得,则M1(,﹣);
作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,
设M2(x,x﹣5),
∵3=,
∴x=,
∴M2(,﹣),
综上所述,点M的坐标为(,﹣)或(,﹣).