• 3.26 MB
  • 2021-05-10 发布

南京市中考模拟数学测试卷建邺一模及答案

  • 13页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2016年初三学情调研试卷(Ⅰ)‎ 数 学 注意事项:‎ ‎1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.‎ ‎2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.‎ ‎3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.‎ ‎4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.‎ 一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)‎ ‎1.下列计算结果为负数的是 A.-1+2‎ B.|-1|‎ C. D.-2-1‎ ‎2.计算a5·(-)2的结果是 A.-a3‎ B.a3‎ C.a7‎ D.a10‎ ‎3.若a<2<b,其中a、b为两个连续的整数,则ab的值为 A.2‎ B.5‎ C.6‎ D.12‎ ‎4.如图是一几何体的三视图,这个几何体可能是 A.三棱柱 B.三棱锥 C.圆柱 D.圆锥 ‎5.如图,已知a∥b,∠1=115°,则∠2的度数是 A.45°‎ B.55°‎ C.65°‎ D.85°‎ 主视图 左视图 俯视图 ‎(第4题)‎ a b ‎1‎ ‎2‎ ‎(第5题)‎ ‎6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图像的交点坐标与其相应的二元一次方程组的解之间的关系.请通过此经验推断:在同一平面直角坐标系中,函数y=5x2-3x+4与y=4x2-x+3的图像交点个数有 A.0个 B.1个 C.2个 D.无数个 二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)‎ ‎7.若式子在实数范围内有意义,则x的取值范围是 ▲ .‎ ‎8.若a-b=3,a+b=-2,则a2-b2= ▲ .‎ ‎9.据统计,2016年春节“黄金周”(‎2月7日至13日)期间,南京共接待游客4 880 000人.‎ ‎ 将4 880 000用科学记数法表示为 ▲ .‎ ‎10.若△ABC∽△A'B'C',相似比为1:3,则△ABC与△A'B'C'的面积比为 ▲ .‎ ‎11.已知圆锥的底面半径为‎1cm,母线长为‎3cm,则其侧面积为 ▲ cm2(结果保留π).‎ ‎12.已知关于x的方程x2+mx-3=0的一个根是1,则它的另一个根是 ▲ .‎ ‎13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.‎ 甲 乙 丙 丁 平均数/环 ‎9.7‎ ‎9.5‎ ‎9.5‎ ‎9.7‎ 方差/环2‎ ‎5.1‎ ‎4.7‎ ‎4.5‎ ‎4.5‎ 请你根据表中数据选一人参加比赛,最合适的人选是 ▲ . ‎ ‎14.在同一平面直角坐标系中,正比例函数y=k1x的图像与反比例函数y= 的图像一个交点的坐标是(-2,3),则它们另一个交点的坐标是 ▲ .‎ ‎15.如图,在正十边形A‎1A2A3A4A5A6A7A8A9A10中,连接A‎1A4、A‎1A7,则∠A‎4A1A7= ▲ °.‎ ‎16.如图①,在等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,且CE=‎4cm.将⊙O沿DC方向向上平移‎1cm后,如图②,⊙O恰与△ABC的边AC、BC相切,则等边△ABC的边长为 ▲ cm. ‎ B ‎①‎ E D(O)‎ C B A C O D A ‎②‎ ‎(第16题)‎ A5‎ A6‎ A7‎ A8‎ A9‎ A10‎ A1‎ A2‎ A3‎ A4‎ ‎(第15题)‎ 三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)‎ ‎17.(6分)先化简,再求值:(-)÷,其中a=+1,b=-1.‎ ‎18.(6分)解不等式组并写出不等式组的整数解.‎ ‎19.(7分)如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,‎ ‎ AE=CF.‎ ‎(1)求证:△ABF≌△CDE;‎ ‎(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?‎ ‎(第19题)‎ F E C B D A ‎20.(8分)“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=‎30cm,DF=‎20cm,AF=‎25cm,FD⊥AE于点D,座杆CE=‎15cm,且∠EAB=75°.‎ ‎(1)求AD的长;‎ ‎(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)‎ 图①‎ 图②‎ ‎(第20题)‎ M F E D C B A ‎21.(7分)甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目 中随机选择一个观看.‎ ‎(1)甲同学观看《最强大脑》的概率是 ▲ ;‎ ‎(2)求甲、乙两名同学观看同一节目的概率.‎ ‎22.(8分)“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币‎2016年10月1日加入SDR(特别提款权),以后出国看世界更加方便.为了解某区6 000名初中生对“人民币加入SDR”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:‎ 某区抽取学生对“人民币加入SDR”知晓情况扇形统计图 某区抽取学生对“人民币加入SDR”知晓情况频数分布表 等级 划记 频数 非常了解 正正正正正正 ‎26‎ 比较了解 正正正正正正正 ‎34‎ 基本了解 正正正正 ‎20‎ 不了解 合计 不了解 ‎26%‎ 非常了解 基本了解 比较了解 ‎(1)本次问卷调查抽取的学生共有 ▲ 人,其中“不了解”的学生有 ▲ 人;‎ ‎(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为 ▲ °;‎ ‎(3)根据抽样的结果,估计该区6 000名初中生中了解“人民币加入SDR”的有多 ‎ 少人(了解是指“非常了解”、“比较了解”和“基本了解”)?‎ ‎23.(8分)某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.‎ 调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?‎ ‎24.(9分)货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4 h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发x h后,货车、轿车分别到达离甲地y‎1 km和y‎2 km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.‎ ‎(1)求点D的坐标,并解释点D的实际意义;‎ ‎(2)求线段DE所在直线的函数表达式;‎ E D C B A ‎8‎ ‎2.4‎ ‎300‎ ‎600‎ y/km O x/h ‎(第24题)‎ ‎(3)当货车出发 ▲ h时,两车相距‎200 km.‎ ‎25.(8分)数学活动课上,小君在平面直角坐标系中对二次函数图像的平移进行了研究.‎ x y 图①‎ ‎(第25题)‎ P y O x 图②‎ ‎ 图①是二次函数y=(x-a)2+(a为常数)当a=-1、0、1、2时的图像.当a取不同值时,其图像构成一个“抛物线簇”.小君发现这些二次函数图像的顶点竟然在同一条直线上.‎ ‎ ‎ ‎(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为 ▲ ; ‎ ‎(2)如图②,当a=0时,二次函数图像上有一点P(2,4).将此二次函数图像沿着(1)‎ ‎ 中发现的直线平移,记二次函数图像的顶点O与点P的对应点分别为O1、P1.若点P1到x轴的距离为5,求平移后二次函数图像所对应的函数表达式.‎ ‎26.(10分)如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接DE、EF,过点F作FG∥ED交AB于点G.‎ ‎(1)求证:直线FG是⊙O的切线;‎ ‎(第26题)‎ O F E D G C B A ‎(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.‎ ‎27.(11分)‎ 问题提出 平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.‎ 初步思考 ‎(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)‎ C B A 图①‎ N M E D C B A 图②‎ ‎(第27题)‎ ‎(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,‎ ‎ 其中AD=AB,AE=AC,BD=BC=CE,连接DE,分别交AB、AC于点M、N.‎ ‎ 求证: DA2=DB·DE.‎ 深入研究 ‎(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P可能为△ABC ‎ 的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能 ‎,请说明理由.‎ ‎2016年初三学情调研试卷(Ⅰ)‎ 数学参考答案及评分标准 说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.‎ 一、选择题(每小题2分,共计12分)‎ 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ 答案 D B C A C B 二、填空题(每小题2分,共计20分)‎ ‎7.x≥2 8.-6 9.4.88×106 10.1: 9 11.3π ‎ ‎12.-3 13.丁 14.(2,-3) 15.54 16. 三、解答题(本大题共11小题,共计88分)‎ ‎17.(本题6分)‎ 解:原式=()· 2分 ‎=-. 4分 当a=+1,b=-1时,‎ 原式=- =- =- . 6分 ‎18.(本题6分)‎ 解:解不等式①,得x≥-1. 2分 解不等式②,得x<. 4分 所以不等式组的解集是-1≤x<. 5分 不等式组的整数解为-1、0、1. 6分 ‎19.(本题7分)‎ 解:(1)∵AB∥CD,‎ ‎∴∠BAC=∠DCA. ‎ ‎∵AE=CF,‎ ‎∴AE+EF=CF+EF,即AF=CE.‎ 又∵∠ABF=∠CDE,‎ ‎∴△ABF≌△CDE. 3分 ‎(2)当四边形ABCD满足AB=AD时,四边形BEDF是菱形. 4分 连接BD交AC于点O,‎ 由(1)△ABF≌△CDE 得AB=CD,BF=DE,∠AFB=∠CED,‎ ‎∴BF∥DE.‎ ‎∵AB∥CD,AB=CD,‎ ‎∴四边形ABCD是平行四边形.‎ 又∵AB=AD,‎ ‎∴□ABCD是菱形.‎ ‎∴BD⊥AC.‎ ‎∵BF=DE,BF∥DE,‎ ‎∴四边形BEDF是平行四边形,‎ ‎∴□BEDF是菱形. 7分 ‎20.(本题8分)‎ 解:(1)在Rt△ADF中,由勾股定理得,‎ AD===15(cm). 3分 ‎(2)AE=AD+CD+EC=15+30+15=60(cm). 4分 过点E作EH⊥AB于H,‎ 在Rt△AEH中,sin∠EAH=, 6分 ‎∴EH=AE·sin∠EAH=AB·sin75°≈ 60×0.97=58.2(cm).‎ 答:点E到AB的距离为58.2 cm. 8分 ‎21.(本题7分)‎ 解:(1) . 2分 ‎(2)分别用A,B,C表示《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目,用表格列出所有可能出现的结果:‎ 甲 乙 A B C A ‎(A,A)‎ ‎(B,A)‎ ‎(C,A)‎ B ‎(A,B)‎ ‎(B,B)‎ ‎(C,B)‎ C ‎(A,C)‎ ‎(B,C)‎ ‎(C,C)‎ 一共有9种可能的结果,它们是等可能的,其中符合要求的有3种.‎ P (甲、乙两名同学观看同一节目)= = .‎ 答:甲、乙两名同学观看同一节目的概率为 . 7分 ‎22.(本题8分)‎ 解:(1)100,20. 2分 ‎ (2)72. 4分 ‎ (3)6 000×80%=4 800人.‎ ‎ 答:估计该校6 000名初中生中对“人民币加入SDR”了解的有4 800人. 8分 ‎23.(本题8分)‎ 解法一:设这种台灯的售价上涨x元,‎ ‎( 600-10x ) ( 40+x-30)=10 000, 4分 解得x1 =10,x2=40, 6分 ‎∴当x=10时,40+x=50,当x=40时,40+x=80; 7分 解法二:设这种台灯的售价为x元,‎ ‎[600-10(x-40)] (x-30)=10 000, 4分 解得x1 =50,x2=80, 7分 答:当这种台灯的售价定为50或80元时,每个月的利润恰为10 000元. 8分 ‎24.(本题9分)‎ 解:(1)求出点坐标D ( 4,300 ). 2分 ‎ 点D是指货车出发4h后,与轿车在距离A地300 km处相遇. 3分 ‎ (2)求出点坐标E ( 6.4,0 ). 4分 设DE所在直线的函数表达式为y=kx+b,‎ ‎ 将点D ( 4,300 ),E ( 6.4,0)代入y=kx+b得:‎ 解得 ‎ ‎∴DE所在直线的函数表达式为y=-125x+800. 7分 ‎(3) 2或5. 9分 ‎25.(本题8分)‎ ‎ 解:(1)y= x. 2分 ‎(2)点O1的坐标为 ( 3,1) 或 (-27,-9) 4分 平移后的二次函数的表达式为y=(x-3)2 +1或y=(x+27)2 -9. 8分 ‎26.(本题10分)‎ ‎ 证明:(1)连接FO,‎ E ‎ ∵ OF=OC,‎ ‎ ∴ ∠OFC=∠OCF.‎ ‎ ∵CF平分∠ACE,‎ F O ‎ ∴∠FCG=∠FCE.‎ ‎ ∴∠OFC=∠FCG.‎ A B C G D ‎ ∵ CE是⊙O的直径,‎ ‎(第26题)‎ ‎ ∴∠EDG=90°,‎ ‎ 又∵FG∥ED,‎ ‎ ∴∠FGC=180°-∠EDG=90°,‎ ‎ ∴∠GFC+∠FCG=90°‎ ‎ ∴∠GFC+∠OFC=90°,‎ ‎ 即∠GFO=90°,‎ ‎ ∴OF⊥GF, 4分 ‎ 又∵OF是⊙O半径,‎ ‎ ∴FG与⊙O相切. 5分 H ‎(第26题)‎ O F E D G C B A ‎ (2)延长FO,与ED交于点H,‎ ‎ 由(1)可知∠HFG=∠FGD=∠GDH=90°,‎ ‎ ∴四边形FGDH是矩形.‎ ‎ ∴FH⊥ED,‎ ‎ ∴HE=HD.‎ ‎ 又∵四边形FGDH是矩形,FG=HD,‎ ‎ ∴HE=FG=4.‎ ‎ ∴ED=8. 7分 ‎ ∵在Rt△OHE中,∠OHE=90°,‎ ‎ ∴OH===3.‎ ‎ ∴FH=FO+OH=5+3=8. 9分 ‎ S四边形FGDH=(FG+ED)·FH=×(4+8)×8=48. 10分 ‎27.(本题11分)‎ 解:(1)画对1个巧妙点给一分. 2分 ‎ (2)∵AB=AC,∠BAC=36°,‎ ‎∴∠ABC=∠ACB=72°,‎ ‎∵AD=AB,AB=AC,BD=BC,‎ ‎∴△ADB≌△ABC.‎ ‎ 同理:△ACE≌△ABC. ‎ ‎ ∴∠BAD=∠BAC=∠CAE=36°,∠ADB=∠ABD=∠ABC=72°,‎ ‎ ∴∠DAE=∠BAD+∠BAC+∠CAE=108°,‎ ‎ ∵AD=AB=AC=AE,‎ ‎ ∴∠ADE=∠AED=36°=∠BAD, ‎ ‎∴∠BDM=∠BDA-∠MDA =36°,‎ ‎∠BMD=∠ADM+∠DAM=72°=∠ABD, ‎ ‎∴DB=DM. 5分 ‎∵∠DBM=∠ABD,∠AED=∠BAD,‎ ‎ ∴△DAM∽△DEA,∴=,DA2 =DM·DE,‎ ‎∵DM=DB,∴DA2 =DB·DE. 7分 ‎ (3)第一种如图①或图②(只需画一个即可),∠BAC=60°.‎ B A C P A B C P ‎ ‎ ‎ 图①‎ ‎图②‎ ‎(第27题)‎ B A C P 第二种如图③,∠BAC=36°; 第三种如图④,∠BAC=108°; 第四种如图⑤,∠BAC=120°.‎ B A C P A C B P ‎ 图③‎ 图④‎ ‎图⑤‎ ‎(第27题)‎ 以上共四种:60°、36°、108°、120°. 11分