• 334.50 KB
  • 2021-05-10 发布

陕西中考数学十年压轴题汇总

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎25.(本题满分12分)‎ 已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点。‎ ‎(1)如图①,线段PM、QN夹在平行直线a和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN。‎ 请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等。‎ ‎(2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”。把经过全等变换后能重合的两条曲线段叫做“曲线段相等”)。‎ 请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等。‎ P Q M N a b 第25题图①‎ a b 第25题图②‎ a b 第25题图③‎ ‎(3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ=m,下底MN=n,且m<n。现计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻。为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由。‎ P Q M N a b 第25题图④‎ S1‎ S2‎ S3‎ S4‎ n m ‎25.(本题满分12分)‎ ‎ 王师傅有两块板材边角料,其中一块是边长为60的正方形板子;另一块是上底为30,下底为120,高为60的直角梯形板子(如图①),王师傅想将这两块板子裁成两块全等的矩形板材。他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点。‎ ‎(1)求FC的长;‎ ‎(2)利用图②求出矩形顶点B所对的顶点到BC边的距离为多少时,矩形的面积最大?最大面积时多少?‎ ‎(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长。‎ ‎25.(本题满分12分)‎ 如图,的半径均为.‎ ‎(1)请在图①中画出弦,使图①为轴对称图形而不是中心对称图形;请在图②中画出弦,使图②仍为中心对称图形;‎ ‎(2)如图③,在中,,且与交于点,夹角为锐角.求四边形面积(用含的式子表示);‎ ‎(3)若线段是的两条弦,且,你认为在以点为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由. ‎ O O O A E C B O ‎(第25题图①)‎ ‎(第25题图②)‎ ‎(第25题图③)‎ ‎(第25题图④)‎ D ‎25、(本题满分12分)‎ 某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。‎ 如图,甲、乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学。点B在点M的北偏西30°的‎3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处。‎ 为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:‎ 方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;‎ 方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;‎ 方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值。‎ 北 东 D ‎30°‎ A B C M O E F 图①‎ 乙村 综上,你认为把供水站建在何处,所需铺设的管道最短?‎ D ‎30°‎ A B C M O E F 图②‎ 乙村 ‎25.(本题满分12分)‎ 问题探究 ‎(1)请在图①的正方形内,画出使的一个点,并说明理由.‎ ‎(2)请在图②的正方形内(含边),画出使的所有的点,并说明理由.‎ 问题解决 ‎(3)如图③,现在一块矩形钢板.工人师傅想用它裁出两块全等的、面积最大的和钢板,且.请你在图③中画出符合要求的点和,并求出的面积(结果保留根号).‎ D C B A ‎①‎ D C B A ‎③‎ D C B A ‎②‎ ‎(第25题图)‎ ‎25.(本题满分12分)‎ ‎ 问题探究(1)请你在图①中做一条直线,使它将矩形ABCD分成面积相等的两部分;‎ ‎ (2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分。‎ ‎ ‎ ‎ 问题解决 (1) 如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处。为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线l将直角梯形OBCD分成面积相等的了部分,你认为直线l是否存在?若存在求出直线l的表达式;若不存在,请说明理由 ‎25.(本题满分12分)‎ 如图①、在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”‎ ‎(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个_________三角形 ‎(2)如图②、甲在矩形ABCD,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;‎ ‎(3)、如图③,在矩形ABCD中, AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?‎ 若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?‎ ‎25.(本题满分12分)‎ 问题探究 (1) 请在图①中作出两条直线,使它们将圆面四等分;‎ (2) 如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD的面积四等分,并说明理由.‎ 问题解决 ‎(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点.如果AB=,CD=,且>,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?若存在,求出BQ的长;若不存在,说明理由.‎ ‎①‎ ‎③‎ ‎②‎ ‎(第25题图)‎ ‎25.(本题满分12分)‎ 问题探究 ‎(1)如图①,在矩形ABCD中,AB=3,BC=4.如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰△APD,并求出此时BP的长;‎ ‎(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点.当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;‎ 问题解决 ‎(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安监控装置,用来监视边AB.现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳.已知∠A=∠E=∠D=90°,AB=‎270m,AE=‎400m,ED=‎285m,CD=‎340m.问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长;若不存在,请说明理由.‎ ‎ ‎ ‎ 图① 图② 图③‎ ‎25.(本题满分12分)‎ 如图,正三角形的边长为.‎ ‎(1)如图①,正方形的顶点在边上,顶点在边上.在正三角形及其内部,以为位似中心,作正方形的位似正方形,且使正方形的面积最大(不要求写作法);‎ ‎(2)求(1)中作出的正方形的边长;‎ ‎(3)如图②,在正三角形中放入正方形和正方形,使得在边上,点分别在边上,求这两个正方形面积和的最大值及最小值,并说明理由.‎ ‎ ‎