- 651.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
浙江省嘉兴市2015年中考数学试卷
卷Ι(选择题)
一、选择题(本题有10小题,每小题4分,共40分,请选出各题中唯一的正确选项,不选,多选,错选,均不得分)
1.计算2-3的结果为(▲)
(A)-1 (B)-2 (C)1 (D)2
2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有(▲)
(A)1个 (B)2个 (C)3个 (D)4个
3.2014年嘉兴市地区生产总值为335 280 000 000元,该数据用科学记数法表示为(▲)
(A)33528×107 (B)0.33528×1012
(C)3.3528×1010 (D)3.3528×1011
4.质检部门为了检测某品牌电器的质量,从同一批次共10 000件产品中随机抽取100件进行检测,检测出次品5件。由此估计这一批次产品中的次品件数是(▲)
(A)5 (B)100 (C)500 (D)10 000
5.如图,直线l1// l2// l3,直线AC分别交l1, l2, l3于点A,B,C;直线DF分别交l1, l2, l3于点D,E,F .AC与DF相较于点H,且AH=2,HB=1,BC=5,则 的值为(▲)
(A) (B)2
(C) (D)
6.与无理数最接近的整数是(▲)
(A)4 (B)5
(C)6 (D)7
7.如图,中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则☉C的
半径为(▲)
(A)2.3 (B)2.4
(C)2.5 (D)2.6
8.一元一次不等式2(x+1)≥4的解在数轴上表示为(▲)
9.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l与点Q .”分别作出了下列四个图形. 其中做法错误的是(▲)
10.如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(B,0),交y轴于点C,
抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=-1,则b=4;③抛物
线上有两点P(x1,y1)和Q(x2,y2),若x1<1< x2,且x1+ x2>2,则y1> y2;④点C关于
抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG
周长的最小值为,其中正确判断的序号是(▲)
(A)① (B)②
(C)③ (D)④
卷Ⅱ(非选择题)
二、填空题(本题有6小题,每小题5分,共30分)
11.因式分解:ab – a=____▲____.
12.右图是百度地图的一部分(比例尺1:4 000 000).按图可估测杭州
在嘉兴的南偏西____▲____度方向上,到嘉兴的实际距离约为____▲____.
13.把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是____▲____.
14.如图,一张三角形纸片ABC,AB=AC=5.折叠该纸片使点A落在边BC
的中点上,折痕经过AC上的点E,则线段AE的长为____▲____.
15.公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,
加上它的七分之一,其和等于19.”此问题中“它”的值为____▲____.
16.如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以
AP为半径的☉P周长为1.点M从A开始沿☉P按逆时针方向转动,射线
AM交x轴于点N(n,0),设点M转过的路程为m(00)的图像交于点A(1,a),点B是此反比例函数图形上任意一点(不与点A重合),BC⊥x轴于点C.
(1)求k的值.
(2)求△OBC的面积.
21.嘉兴市2010~2014年社会消费品零售总额及增速统计图如下:
请根据图中信息,解答下列问题:
(1)求嘉兴市2010~2014年社会消费品零售总额增速这组数据的中位数.
(2)求嘉兴市近三年(2012~2014年)的社会消费品零售总额这组数据的平均数.
(3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).
22.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.
(1)求∠CAO'的度数.
(2)显示屏的顶部B'比原来升高了多少?
(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?
23.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人.设新工人李明第X天生产的粽子数量为y只,y与x满足如下关系:
(1)李明第几天生产的粽子数量为420只?
(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系
可用图中的函数图形来刻画.若李明第x天创造的利润为w元,求
w关于x的函数表达式,并求出第几天的利润最大,最大利润时多
少元?(利润=出厂价-成本)
24.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)概念理解
如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.
(2)问题探究
①小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由。
②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿
∠ABC的平分线BB'方向平移得到△A'B'C',连结AA',BC'.小红要是平移后的四边形ABC'A'是“等邻边四边形”,应平移多少距离(即线段BB'的长)?
(3)应用拓展
如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD==90°,AC,BD为对角线,AC=AB.试探究BC,CD,BD的数量关系.
参考答案
1-10、ABDCD CBAAC
11、a(b﹣1)
12、45,160km
13、
14、2.5
15、
16、-1
17、6,2a-1
18、解:小明的解法有三处错误,步骤①去分母有误; 步骤②去括号有误;步骤⑥少检验;
正确解法为:方程两边乘以x,得:1﹣(x﹣2)=x,
去括号得:1﹣x+2=x,
移项得:﹣x﹣x=﹣1﹣2,
合并同类项得:﹣2x=﹣3,
解得:x=,
经检验x=是分式方程的解,
则方程的解为x=.
19、解:(1)由图可知,∠DAG,∠AFB,∠CDE与∠AED相等;
(2)选择∠DAG=∠AED,证明如下:
∵正方形ABCD,
∴∠DAB=∠B=90°,AD=AB,
∵AF=DE,
在△DAE与△ABF中,
,
∴△DAE≌△ABF(SAS),
∴∠ADE=∠BAF,
∵∠DAG+∠BAF=90°,∠GDA+∠AED=90°,
∴∠DAG=∠AED.
20、解:(1)∵直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),先
∴将A(1,a)代入直线y=2x,得:
a=2
∴A(1,2),
将A(1,2)代入反比例函数y=中得:k=2,
∴y=;
(2)∵B是反比例函数y=图象上的点,且BC⊥x轴于点C,
∴△BOC的面积=|k|=×2=1.
21、解:(1)数据从小到大排列10.4%,12.5%,14.2%,15.1%,18.7%,
则嘉兴市2010~2014年社会消费品零售总额增速这组数据的中位数14.2%;
(2)嘉兴市近三年(2012~2014年)的社会消费品零售总额这组数据的平均数是:
(799.4+948.6+1083.7+1196.9+1347.0)÷5=1075.12(亿元);
(3)从增速中位数分析,嘉兴市2015年社会消费品零售总额为1347×(1+14.2%)=1538.274(亿元).
22、解:(1)∵O′C⊥OA于C,OA=OB=24cm,
∴sin∠CAO′=,
∴∠CAO′=30°;
(2)过点B作BD⊥AO交AO的延长线于D,
∵sin∠BOD=,
∴BD=OB•sin∠BOD,
∵∠AOB=120°,
∴∠BOD=60°,
∴BD=OB•sin∠BOD=24×=12,
∵O′C⊥OA,∠CAO′=30°,
∴∠AO′C=60°,
∵∠AO′B′=120°,
∴∠AO′B′+∠AO′C=180°,
∴O′B′+O′C﹣BD=24+12﹣12=3﹣12,
∴显示屏的顶部B′比原来升高了(36﹣12)cm;
(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,
理由;∵显示屏O′B与水平线的夹角仍保持120°,
∴∠EO′F=120°,
∴∠FO′A=∠CAO′=30°,
∵∠AO′B′=120°,
∴∠EO′B′=∠FO′A=30°,
∴显示屏O′B′应绕点O′按顺时针方向旋转30°.
23、解:(1)设李明第n天生产的粽子数量为420只,
由题意可知:30n+120=420,
解得n=10.
答:第10天生产的粽子数量为420只.
(2)由图象得,当0≤x≤9时,p=4.1;
当9≤x≤15时,设P=kx+b,
把点(9,4.1),(15,4.7)代入得,,
解得,
∴p=0.1x+3.2,
①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);
②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,
∵x是整数,
∴当x=9时,w最大=714(元);
③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,
∵a=﹣3<0,
∴当x=﹣=12时,w最大=768(元);
综上,当x=12时,w有最大值,最大值为768.
24、解:(1)AB=BC或BC=CD或CD=AD或AD=AB(任写一个即可);
(2)①正确,理由为:
∵四边形的对角线互相平分,∴这个四边形是平行四边形,
∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,
∴这个“等邻边四边形”是菱形;
②∵∠ABC=90°,AB=2,BC=1,
∴AC=,
∵将Rt△ABC平移得到△A′B′C′,
∴BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,
(I)如图1,当AA′=AB时,BB′=AA′=AB=2;
(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′=;
(III)当A′C′=BC′=时,
如图3,延长C′B′交AB于点D,则C′B′⊥AB,
∵BB′平分∠ABC,
∴∠ABB′=∠ABC=45°,
∴∠BB′D=′∠ABB′=45°,
∴B′D=B,
设B′D=BD=x,
则C′D=x+1,BB′=x,
∵在Rt△BC′D中,BD2+(C′D)2=(BC′)2
∴x2+(x+1)2=()2,
解得:x1=1,x2=﹣2(不合题意,舍去),
∴BB′=x=,
(Ⅳ)当BC′=AB=2时,如图4,
与(Ⅲ)方法一同理可得:BD2+(C′D)2=(BC′)2,
设B′D=BD=x,
则x2+(x+1)2=22,
解得:x1=,x2=(不合题意,舍去),
∴BB′=x=;
(3)BC,CD,BD的数量关系为:BC2+CD2=2BD2,如图5,
∵AB=AD,
∴将△ADC绕点A旋转到△ABF,连接CF,
∴△ABF≌△ADC,
∴∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,
∴∠BAD=∠CAF,==1,
∴△ACF∽△ABD,
∴==,∴BD,
∵∠BAD+∠ADC+∠BCD+∠ABC=360°,
∴∠ABC+∠ADC﹣360°﹣(∠BAD+∠BCD)=360°﹣90°=270°,
∴∠ABC+∠ABF=270°,
∴∠CBF=90°,
∴BC2+FB2﹣CF2=(BD)2=2BD2,
∴BC2+CD2=2BD2.
相关文档
- 广东深圳2018中考数学试题分类解析2021-05-1015页
- 益阳市中考数学试题及答案word含解2021-05-1014页
- 南京中考数学试题答案2021-05-1010页
- 全国各地中考数学试题汇编圆解答题2021-05-1055页
- 2013四川德阳中考数学试题解析版2021-05-1017页
- 2018年天津中考数学试题及答案2021-05-1014页
- 辽宁省沈阳市中考数学试题含答案Wo2021-05-109页
- 2013中考数学试题分类汇编三角形相2021-05-1073页
- 广西河池市中考数学试题word版含答2021-05-107页
- 湖北恩施州中考数学试题word版及答2021-05-1011页