- 419.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2014年深圳市中考数学试卷
一、选择题(共12小题,每小题3分,满分36分)
1.(3分)9的相反数是( )
A.﹣9 B.9 C.±9 D.
2.(3分)下列图形中是轴对称图形但不是中心对称图形的是( )
A. B. C. D.
3.(3分)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为( )
A.4.73×108 B.4.73×109 C.4.73×1010 D.4.73×1011
4.(3分)由几个大小相同的正方形组成的几何图形如图,则它的俯视图是( )
A. B. C. D.
5.(3分)在﹣2,1,2,1,4,6中正确的是( )
A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8
6.(3分)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=( )
A.﹣1 B.﹣3 C.3 D.7
7.(3分)下列方程没有实数根的是( )
A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12
8.(3分)如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )
A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F
9.(3分)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是( )
A. B. C. D.
10.(3分)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )
A.600﹣250米 B.600﹣250米 C.350+350米 D.500米
11.(3分)二次函数y=ax2+bx+c图象如图,下列正确的个数为( )
①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;
⑤a+b+c>0;⑥当x>1时,y随x增大而减小.
A.2 B.3 C.4 D.5
12.(3分)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=( )
A.1 B.3﹣ C.﹣1 D.4﹣2
二、填空题(共4小题,每小题3分,满分12分)
13.(3分)因式分解:2x2﹣8= .
14.(3分)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= .
15.(3分)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k= .
16.(3分)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有 .
三、解答题
17.计算:﹣2tan60°+(﹣1)0﹣()﹣1.
18.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.
19.关于体育选考项目统计图
项目
频数
频率
A
80
b
B
c
0.3
C
20
0.1
D
40
0.2
合计
a
1
(1)求出表中a,b,c的值,并将条形统计图补充完整.
表中a= ,b= ,c= .
(2)如果有3万人参加体育选考,会有多少人选择篮球?
20.已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,
(1)证明四边形ABDF是平行四边形;
(2)若AF=DF=5,AD=6,求AC的长.
21.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.
(1)求甲、乙进货价;
(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?
22.如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.
(1)求⊙M的半径;
(2)证明:BD为⊙M的切线;
(3)在直线MC上找一点P,使|DP﹣AP|最大.
23.如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).
(1)求抛物线的解析式;
(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,
①求当△BEF与△BAO相似时,E点坐标;
②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.
2014年广东省深圳市中考数学试卷--答案
一、选择题(共12小题,每小题3分,满分36分)
1.(3分)9的相反数是( )
A.﹣9 B.9 C.±9 D.
【解答】解:9的相反数是﹣9,
故选:A.
2.(3分)下列图形中是轴对称图形但不是中心对称图形的是( )
A. B. C. D.
【解答】解:A、此图形不是中心对称图形,也不是轴对称图形,故A选项错误;
B、此图形不是中心对称图形,是轴对称图形,故B选项正确;
C、此图形是中心对称图形,也是轴对称图形,故C选项错误;
D、此图形是中心对称图形,不是轴对称图形,故D选项错误.
故答案选:B.
3.(3分)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为( )
A.4.73×108 B.4.73×109 C.4.73×1010 D.4.73×1011
【解答】解:47.3亿=47 3000 0000=4.73×109,
故选:B.
4.(3分)由几个大小相同的正方形组成的几何图形如图,则它的俯视图是( )
A. B. C. D.
【解答】解:从上面看第一层右边一个,第二层三个正方形,
故选:A.
5.(3分)在﹣2,1,2,1,4,6中正确的是( )
A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8
【解答】解:A、这组数据的平均数为:(﹣2+1+2+1+4+6)÷6=12÷6=2,故A选项错误;
B、在这一组数据中1是出现次数最多的,故众数是1,故B选项错误;
C、将这组数据从小到大的顺序排列为:﹣2,1,1,2,4,6,处于中间位置的两个数是1,2,那么由中位数的定义可知,这组数据的中位数是:(1+2)÷2=1.5,故C选项错误;
D、极差6﹣(﹣2)=8,故D选项正确.
故选:D.
6.(3分)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=( )
A.﹣1 B.﹣3 C.3 D.7
【解答】解:∵函数y=ax+b经过(1,3),(0,﹣2),
∴,
解得,
∴a﹣b=5+2=7.
故选:D.
7.(3分)下列方程没有实数根的是( )
A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12
【解答】解:A、方程变形为:x2+4x﹣10=0,△=42﹣4×1×(﹣10)=56>0,所以方程有两个不相等的实数根,故A选项不符合题意;
B、△=82﹣4×3×(﹣3)=100>0,所以方程有两个不相等的实数根,故B选项不符合题意;
C、△=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根,故C选项符合题意;
D、方程变形为:x2﹣5x﹣6=0,△=52﹣4×1×(﹣6)=49>0,所以方程有两个不相等的实数根,故D选项不符合题意.
故选:C.
8.(3分)如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )
A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F
【解答】解:∵AB=DE,∠B=∠DEF,
∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;
当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;
但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;
故选:C.
9.(3分)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是( )
A. B. C. D.
【解答】解:画树状图得:
∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,
∴抽取的两个球数字之和大于6的概率是:=.
故选:C.
10.(3分)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )
A.600﹣250米 B.600﹣250米 C.350+350米 D.500米
【解答】解:∵BE:AE=5:12,
=13,
∴BE:AE:AB=5:12:13,
∵AB=1300米,
∴AE=1200米,
BE=500米,
设EC=x米,
∵∠DBF=60°,
∴DF=x米.
又∵∠DAC=30°,
∴AC=CD.
即:1200+x=(500+x),
解得x=600﹣250.
∴DF=x=600﹣750,
∴CD=DF+CF=600﹣250(米).
答:山高CD为(600﹣250)米.
故选:B.
11.(3分)二次函数y=ax2+bx+c图象如图,下列正确的个数为( )
①bc>0;
②2a﹣3c<0;
③2a+b>0;
④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;
⑤a+b+c>0;
⑥当x>1时,y随x增大而减小.
A.2 B.3 C.4 D.5
【解答】解:①∵抛物线开口向上,
∴a>0,
∵对称轴在y轴右侧,
∴a,b异号即b<0,
∵抛物线与y轴的交点在负半轴,
∴c<0,
∴bc>0,故①正确;
②∵a>0,c<0,
∴2a﹣3c>0,故②错误;
③∵对称轴x=﹣<1,a>0,
∴﹣b<2a,
∴2a+b>0,故③正确;
④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,
即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;
⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;
⑥∵a>0,对称轴x=1,
∴当x>1时,y随x增大而增大,故⑥错误.
综上所述,正确的结论是①③④,共3个.
故选:B.
12.(3分)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=( )
A.1 B.3﹣ C.﹣1 D.4﹣2
【解答】解:如图,延长AE交BC的延长线于G,
∵E为CD中点,
∴CE=DE,
∵AD∥BC,
∴∠DAE=∠G=30°,
在△ADE和△GCE中,
,
∴△ADE≌△GCE(AAS),
∴CG=AD=,AE=EG=2,
∴AG=AE+EG=2+2=4,
∵AE⊥AF,
∴AF=AGtan30°=4×=4,
GF=AG÷cos30°=4÷=8,
过点A作AM⊥BC于M,过点D作DN⊥BC于N,
则MN=AD=,
∵四边形ABCD为等腰梯形,
∴BM=CN,
∵MG=AG•cos30°=4×=6,
∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,
∵AF⊥AE,AM⊥BC,
∴∠FAM=∠G=30°,
∴FM=AF•sin30°=4×=2,
∴BF=BM﹣MF=6﹣2﹣2=4﹣2.
故选:D.
二、填空题(共4小题,每小题3分,满分12分)
13.(3分)因式分解:2x2﹣8= 2(x+2)(x﹣2) .
【解答】解:2x2﹣8=2(x+2)(x﹣2).
14.(3分)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3 .
【解答】解:如图,过点D作DE⊥AB于E,
∵∠C=90°,AC=6,BC=8,
∴AB===10,
∵AD平分∠CAB,
∴CD=DE,
∴S△ABC=AC•CD+AB•DE=AC•BC,
即×6•CD+×10•CD=×6×8,
解得CD=3.
故答案为:3.
15.(3分)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k= 8 .
【解答】解:过A作AE⊥x轴于点E.
∵S△OAE=S△OCD,
∴S四边形AECB=S△BOD=21,
∵AE∥BC,
∴△OAE∽△OBC,
∴==()2=,
∴S△OAE=4,
则k=8.
故答案是:8.
16.(3分)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有 485 .
【解答】解:第一个图形正三角形的个数为5,
第二个图形正三角形的个数为5×3+2=2×32﹣1=17,
第三个图形正三角形的个数为17×3+2=2×33﹣1=53,
第四个图形正三角形的个数为53×3+2=2×34﹣1=161,
第五个图形正三角形的个数为161×3+2=2×35﹣1=485.
如果是第n个图,则有2×3n﹣1个
故答案为:485.
三、解答题
17.计算:﹣2tan60°+(﹣1)0﹣()﹣1.
【解答】解:原式=2﹣2+1﹣3=﹣2.
18.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.
【解答】解:原式=•=3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8,
当x=1时,原式=2+8=10.
19.关于体育选考项目统计图
项目
频数
频率
A
80
b
B
c
0.3
C
20
0.1
D
40
0.2
合计
a
1
(1)求出表中a,b,c的值,并将条形统计图补充完整.
表中a= 200 ,b= 0.4 ,c= 60 .
(2)如果有3万人参加体育选考,会有多少人选择篮球?
【解答】解:(1)a=20÷0.1=200,
c=200×0.3=60,
b=80÷200=0.4,
故答案为:200,0.4,60,
补全条形统计图如下:
(2)30000×0.4=12000(人).
答:3万人参加体育选考,会有12000人选择篮球.
20.已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,
(1)证明四边形ABDF是平行四边形;
(2)若AF=DF=5,AD=6,求AC的长.
【解答】(1)证明:∵BD垂直平分AC,
∴AB=BC,AD=DC,
在△ADB与△CDB中,
,
∴△ADB≌△CDB(SSS)
∴∠BCD=∠BAD,
∵∠BCD=∠ADF,
∴∠BAD=∠ADF,
∴AB∥FD,
∵BD⊥AC,AF⊥AC,
∴AF∥BD,
∴四边形ABDF是平行四边形,
(2)解:∵四边形ABDF是平行四边形,AF=DF=5,
∴▱ABDF是菱形,
∴AB=BD=5,
∵AD=6,
设BE=x,则DE=5﹣x,
∴AB2﹣BE2=AD2﹣DE2,
即52﹣x2=62﹣(5﹣x)2
解得:x=,
∴=,
∴AC=2AE=.
21.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.
(1)求甲、乙进货价;
(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?
【解答】解:(1)设乙进货价x元,则甲进货价为(x+10)元,由题意得
=
解得x=15,
经检验x=15是原方程的根,
则x+10=25,
答:甲进货价为25元,乙进货价15元.
(2)设进甲种文具m件,则乙种文具(100﹣m)件,由题意得
解得55<m<58
所以m=56,57
则100﹣m=44,43.
有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.
22.如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.
(1)求⊙M的半径;
(2)证明:BD为⊙M的切线;
(3)在直线MC上找一点P,使|DP﹣AP|最大.
【解答】(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,
∴AB=5,
∴圆的半径为;
(2)证明:由题意可得出:M(2,)
又∵C为劣弧AO的中点,由垂径定理且 MC=,故 C(2,﹣1)
过 D 作 DH⊥x 轴于 H,设 MC 与 x 轴交于 K,
则△ACK∽△ADH,
又∵DC=4AC,
故 DH=5KC=5,HA=5KA=10,
∴D(﹣6,﹣5)
设直线AB表达式为:y=kx+b,
,
解得:
故直线AB表达式为:y=﹣x+3,
同理可得:根据B,D两点求出BD的表达式为y=x+3,
∵kAB×kBD=﹣1,
∴BD⊥AB,BD为⊙M的切线;
(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,
此P点为所求,且线段DO的长为|DP﹣AP|的最大值;
设直线DO表达式为 y=kx,
∴﹣5=﹣6k,
解得:k=,
∴直线DO表达式为 y=x
又∵在直线DO上的点P的横坐标为2,y=,
∴P(2,),
此时|DP﹣AP|=DO==.
23.如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).
(1)求抛物线的解析式;
(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,
①求当△BEF与△BAO相似时,E点坐标;
②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.
【解答】解:(1)直线AB的解析式为y=2x+4,
令x=0,得y=4;令y=0,得x=﹣2.
∴A(﹣2,0)、B(0,4).
∵抛物线的顶点为点A(﹣2,0),
∴设抛物线的解析式为:y=a(x+2)2,
点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,
∴抛物线的解析式为y=﹣(x+2)2.
(2)平移过程中,设点E的坐标为(m,2m+4),
则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,
∴F(0,﹣m2+2m+4).
①∵点E为顶点,∴∠BEF≥90°,
∴若△BEF与△BAO相似,只能是点E作为直角顶点,
∴△BAO∽△BFE,
∴,即,可得:BE=2EF.
如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).
∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),
∴BH=|2m|,FH=|﹣m2|.
在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,
又∵BE=2EF,∴BH=4FH,
即:4|﹣m2|=|2m|.
若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);
若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为锐角,故此情形不成立.
∴m=﹣,
∴E(﹣,3).
②假设存在.
联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),
∴S△ACD=×4×4=8.
∵S△EFG与S△ACD存在8倍的关系,
∴S△EFG=64或S△EFG=1.
联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).
∴点E与点G横坐标相差2,即:|xG|﹣|xE|=2.
当顶点E在y轴左侧时,如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|xG|﹣|xE|)=BF.
∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.
∴|﹣m2+2m|=64或|﹣m2+2m|=1,
∴﹣m2+2m可取值为:64、﹣64、1、﹣1.
当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.
∴﹣m2+2m可取值为:﹣64、1、﹣1.
∵F(0,﹣m2+2m+4),
∴F坐标为:(0,﹣60)、(0,3)、(0,5).
同理,当顶点E在y轴右侧时,点F为(0,5);
综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).