- 60.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
一次函数测单元检测试题(3)
班级 姓名 成绩
一. 填空(每题4分,共32分)
1. 已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 .
2. 已知一次函数y=kx+5的图象经过点(-1,2),则k= .
3. 一次函数y= -2x+4的图象与x轴交点坐标是 ,与y轴交点坐标是
图象与坐标轴所围成的三角形面积是 .
4. 下列三个函数y= -2x, y= - x, y=(- )x共同点是(1) ;
(2) ;(3) .
5. 某种储蓄的月利率为0.15%,现存入1000元,则本息和y(元)与所存月数x之间的函数关系式是 .
6.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .
(1)y随着x的增大而减小。 (2)图象经过点(1,-3)
7.某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表
质量x(千克)
1
2
3
4
……
售价y(元)
3.60+0.20
7.20+0.20
10.80+0.20
14.40+0.2
……
由上表得y与x之间的关系式是 .
8在计算器上按照下面的程序进行操作:
下表中的x与y分别是输入的6个数及相应的计算结果:
x
-2
-1
0
1
2
3
y
-5
-2
1
4
7
10
上面操作程序中所按的第三个键和第四个键
应是 .
二.选择题(每题4分,共32分)
9.下列函数(1)y=πx (2)y=2x-1 (3)y= (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( )
(A)4个 (B)3个 (C)2个 (D)1个
10.已知点(-4,y1),(2,y2)都在直线y=- x+2上,则y1 y2大小关系是( )
(A)y1 >y2 (B)y1 =y2 (C)y1 0,b>0 (B)k>0,b<0
x(cm)
20
5
20
12.5
(C)k<0,b>0 (D)k<0,b<0
13.弹簧的长度y cm与所挂物体的质量x(kg)的关系是一次函数,图象
如右图所示,则弹簧不挂物体时的长度是( )
(A)9cm (B)10cm (C)10.5cm (D)11cm
14.若把一次函数y=2x-3,向上平移3个单位长度,得到图象解析式是( )
(A) y=2x (B) y=2x-6
(C) y=5x-3 (D)y=-x-3
15.下面函数图象不经过第二象限的为 ( )
(A) y=3x+2 (B) y=3x-2 (C) y=-3x+2 (D) y=-3x-2
16.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值( )
(A)> (B)<
(C)= (D)以上均有可能
三.解答题(第19~23题,每题6分,第24,25题,每题8分,共36分)
17.在同一坐标系中,作出函数y= -2x与y= x+1的图象.
18.已知函数y=(2m+1)x+m -3
(1)若函数图象经过原点,求m的值
(2) 若函数图象在y轴的截距为-2,求m的值
(3)若函数的图象平行直线y=3x –3,求m的值
(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
19.如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题
(1)当行驶8千米时,收费应为 元
(2)从图象上你能获得哪些信息?(请写出2条)
①
②
(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式
20.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:
月份
用水量(m3)
收费(元)
9
5
7.5
10
9
27
设某户每月用水量x(立方米),应交水费y(元)
(1) 求a,c的值
(2) 当x≤6,x≥6时,分别写出y于x的函数关系式
(3) 若该户11月份用水量为8立方米,求该户11月份水费是多少元?
21.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)试求降价前y与x之间的关系式
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
参考答案:
1 y= —2x 2、3 3、(2,0) (0,4) 4 4、都是正比例函数,都是经过二、四象限的直线,y随x的增大而减少。 5 、 y=1000+1.5x 7 y=0.2+3.60x 8、+1
二、BADDB ABA
三、18、(1)3,(2)1 (3)1 (4) 19、(1)10 (2) 略(3)y=1.2x+1.4
20、(1)a=1.8 c=5.4(2)当x≤6时,y=1.8x; 当x≥6时,y=5.4x-21.6 (3) 21.6元
21、(1)5元 (2)y=0.5x+5 (3) 0.5元/㎏,(4)40㎏