- 147.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第三专题 方程(组)
一、 一元一次方程
解方程的一般步骤
(1)去分母(方程两边同乘各分母的最小公倍数)
(2)去括号(按去括号法则和分配律进行)
(3)移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
(4)合并(把方程化成ax=b(a≠0)形式)
(5)系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=)
例1. 下列四个方程中,一元一次方程是( )
A. =1 B. x=0 C. x2-1=0 D. x+y=1
拓展:若方程mx-3=3x+6是一元一次方程,则m=_____
例2. 若关于x的方程ax2-5x-6=0的一个解是2,求a的值.
例3. 解方程+[1-(4x-1)]=1.
练(1)4x-3(20-x)=6x-7(9-x)
(2)-=1- (3)
二、二元一次方程组
1.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程.
2. 二元一次方程组:由2个或2个以上的 组成的方程组叫二元一次方程组.
3.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.
4.二元一次方程组的解: 使二元一次方程组的 ,叫做二元一次方程组的解.
5. 解二元一次方程的方法步骤:
消元
转化
二元一次方程组 方程.
消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.
6.三元一次方程组的解法:
消元为二元一次方程组。
例1.分别用代入法和加减法解方程组:
5x+6y=16 ①
2x-3y=1 ②
【友情提示】当某个未知数的系数绝对值是1时,用___ 法较简便;
当两个方程中同一个未知数的系数绝对值相等或成整数倍时,用___法较简便。
练习: 解方程组
练习
1. 若,则x= ,y=
2. 若和是同类项,则m= ,n=
3. 若是关于x,y的二元一次方程,则a= ,b=.
4. 若,且与的和等于0,则x= ,y=
5. 当a ,b 时,方程是关于x,y的二元一次方程。
6. 二元一次方程4x-3y+5=0时,用含x的代数式表示y,则y= ,用含y的代数式表示x,则x=
7. 已知 x=5+t 用x的代数式表示y,则y=
y+1=3-t
8. 已知与互为相反数,则x= ,y=
9. 若二元一次方程组和同解,则可通过解方程组 _________ 求得这个解。
10.知有理数 满足条件:,则 。
11.甲、乙两人解方程组,甲正确地解得,乙因为把C看错,误认为d,解得 求a、b、c、d
三、一元二次方程
一元二次方程的有关概念 (等号两边都是整式, 只含有一个未知数(一元)
,并且未知数的最高次数是2(二次)的方程叫做一元二次方程)
例:方程(m-2)x|m| +3mx-4=0是关于x的一元二次方程,则 ( )
A.m=±2 B.m=2 C.m=-2 D.m≠ ±2
一元二次方程的解法
(1)直接开平方法 Ax2=B(A≠0,且A、B需同号) (形如(x-k)² =h(h>0)型)
(2)配方法(任何一个一元二次方程)
步骤:1.化1:把二次项系数化为1; 2.移项:把常数项移到方程的右边; 3.配方:方程两边同加一次项系数一半的平方; 4.变形:化成 5.开平方,求解
例4x2-8x-5=0
(3)因式分解法 1、提取公因式法2、平方差公式(左边能分解为两个一次式的积,右边是0的方程)
步骤:一移-----方程的右边=0; 二分-----方程的左边因式分解;
三化-----方程化为两个一元一次方程;四解-----写出方程两个解;
(4)公式法(任何一个一元二次方程)
先化为一般形式;②再确定a、b、c,求b2-4ac;③ 当 b2-4ac≥ 0时,公式:
若b2-4ac<0,方程没有实数根。
例:用适当的方法解下列方程:(选择方法的顺序是:直接开平方法 →分解因式法 → 公式法→配方法 )
一元二次方程根的判别式:根的判别式:b2-4ac
一元二次方程根与系数的关系:韦达定理: