- 565.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.
(1)求证:BC=CD;
(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.
2.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若=KD·GE,试判断AC与EF的位置关系,并说明理由;
(3) 在(2)的条件下,若sinE=,AK=,求FG的长.
3.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:△PCF是等腰三角形;
(3)若tan∠ABC=,BE=7,求线段PC的长.
4.
5.已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC,连结DE,DE=。
(1) 求证:AM·MB=EM·MC;(2)求EM的长;(3)求sin∠EOB的值。
6.如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知
∠EAT=30°,AE=3,MN=2.
(1)求∠COB的度数;
(2)求⊙O的半径R;
(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.
7.如图,AB是半径O的直径,AB=2.射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.
(1)求证:△ABC∽△OFB;
(2)当△ABD与△BFO的面枳相等时,求BQ的长;
(3) 求证:当D在AM上移动时(A点除外),点Q始终是线段BF的中点
8. 如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是 上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.
(1)求证:△PAC∽△PDF;
(2)若AB=5,,求PD的长;
(3)在点P运动过程中,设,求与之间的函数关系式.(不要求写出的取值范围)
1.
【解答】:
(1)证明:∵DC2=CE•CA,
∴=,
△CDE∽△CAD,
∴∠CDB=∠DBC,
∵四边形ABCD内接于⊙O,
∴BC=CD;
(2)解:如图,连接OC,
∵BC=CD,
∴∠DAC=∠CAB,
又∵AO=CO,
∴∠CAB=∠ACO,
∴∠DAC=∠ACO,
∴AD∥OC,
∴=,
∵PB=OB,CD=,
∴=
∴PC=4
又∵PC•PD=PB•PA
∴PA=4也就是半径OB=4,
在RT△ACB中,
AC===2,
∵AB是直径,
∴∠ADB=∠ACB=90°
∴∠FDA+∠BDC=90°
∠CBA+∠CAB=90°
∵∠BDC=∠CAB
∴∠FDA=∠CBA
又∵∠AFD=∠ACB=90°
∴△AFD∽△ACB
∴
在Rt△AFP中,设FD=x,则AF=,
∴在RT△APF中有,,
求得DF=.
2
解:(1)如答图1,连接OG.
∵EG为切线,∴∠KGE+∠OGA=90°,
∵CD⊥AB,∴∠AKH+∠OAG=90°,
又OA=OG,∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,∴KE=GE.
(2)AC∥EF,理由为:
连接GD,如答图2所示.
∵KG2=KDGE,即=,
∴=,又∠KGE=∠GKE,
∴△GKD∽△EGK,
∴∠E=∠AGD,又∠C=∠AGD,
∴∠E=∠C,
∴AC∥EF;
(3)连接OG,OC,如答图3所示.
sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,
∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK﹣
CH=t.
在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,
即(3t)2+t2=()2,
解得t=.
设⊙O半径为r,
在Rt△OCH中,OC=r,OH=r﹣3t,CH=4t,
由勾股定理得:OH2+CH2=OC2,
即(r﹣3t)2+(4t)2=r2,解得r=t=.
∵EF为切线,∴△OGF为直角三角形,
在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH==,
∴FG===.
.
4
5.
6.
7.
8.