- 434.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年贵州省黔东南州中考数学试卷
一、选择题(每小题4分,共40分)
1.(4分)下列四个数中,最大的数是( )
A.﹣2 B.﹣1 C.0 D.
2.(4分)如图的几何体是由四个大小相同的正方体组成的,它的俯视图是( )
A. B. C. D.
3.(4分)据统计,近十年中国累积节能1570000万吨标准煤,1570000这个数用科学记数法表示为( )
A.0.157×107 B.1.57×106 C.1.57×107 D.1.57×108
4.(4分)如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=( )
A.30° B.60° C.90° D.120°
5.(4分)下列图案中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
6.(4分)下列运算正确的是( )
A.3a2﹣2a2=a2 B.﹣(2a)2=﹣2a2 C.(a+b)2=a2+b2 D.﹣2(a﹣1)=﹣2a+1
7.(4分)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
8.(4分)施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )
A.=2 B.=2
C.=2 D.=2
9.(4分)下列等式正确的是( )
A.=2 B.=3 C.=4 D.=5
10.(4分)如图,在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为( )
A.26cm B.24cm C.20cm D.18cm
二、填空题(每小题3分,共30分)
11.(3分)若∠α=35°,则∠α的补角为 度.
12.(3分)不等式组的解集是 .
13.(3分)如图为洪涛同学的小测卷,他的得分应是 分.
14.(3分)若100个产品中有98个正品,2个次品,从中随机抽取一个,抽到次品的概率是 .
15.(3分)某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成
绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是 .
甲
乙
丙
丁
7
8
8
7
s2
1
1.2
0.9
1.8
16.(3分)三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形的周长是 .
17.(3分)已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是 .
18.(3分)已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是 .
x
…
﹣1
0
1
2
…
y
…
0
3
4
3
…
19.(3分)根据下列各式的规律,在横线处填空:
,,=,…,+﹣ =
20.(3分)如图,已知在△ABC中,BC边上的高AD与AC边上的高BE交于点F,且∠BAC=45°,BD=6,CD=4,则△ABC的面积为 .
三、解答题(本题共12分)
21.(12分)(1)计算:|﹣2|﹣2cos60°+()﹣1﹣(2018﹣)0
(2)先化简(1﹣)•,再在1、2、3中选取一个适当的数代入求值.
四、(本题共12分)
22.(12分)系统找不到该试题
五、(本题共14分)
23.(14分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
(1)根据图中信息求出m= ,n= ;
(2)请你帮助他们将这两个统计图补全;
(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.
六、(本题共14分)
24.(14分)某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的
图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?
七、阅读材料题(本题共12分)
25.(12分)“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;……;所以容易求出图10、图n中黑点的个数分别是 、 .
请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题:
(1)第5个点阵中有 个圆圈;第n个点阵中有 个圆圈.
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
八、(本题共16分)
26.(16分)如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.
(1)点P到达终点O的运动时间是 s,此时点Q的运动距离是 cm;
(2)当运动时间为2s时,P、Q两点的距离为 cm;
(3)请你计算出发多久时,点P和点Q之间的距离是10cm;
(4)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线y=过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.
2018年贵州省黔东南州中考数学试卷
参考答案与试题解析
一、选择题(每小题4分,共40分)
1.(4分)下列四个数中,最大的数是( )
A.﹣2 B.﹣1 C.0 D.
【解答】解:根据实数比较大小的方法,可得
﹣2<﹣1<0<,
所以最大的数是.
故选:D.
2.(4分)如图的几何体是由四个大小相同的正方体组成的,它的俯视图是( )
A. B. C. D.
【解答】解:从上面可看到从上往下2行小正方形的个数为:2,1,并且下面一行的正方形靠左,
故选:C.
3.(4分)据统计,近十年中国累积节能1570000万吨标准煤,1570000这个数用科学记数法表示为( )
A.0.157×107 B.1.57×106 C.1.57×107 D.1.57×108
【解答】解:1570000=1.57×106,
故选:B.
4.(4分)如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=( )
A.30° B.60° C.90° D.120°
【解答】解:∵AD∥BC,
∴∠ADB=∠B=30°,
再根据角平分线的概念,得:∠BDE=∠ADB=30°,
再根据两条直线平行,内错角相等得:∠DEC=∠ADE=60°,
故选:B.
5.(4分)下列图案中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、是轴对称图形,也是中心对称图形,故此选项正确.
故选:D.
6.(4分)下列运算正确的是( )
A.3a2﹣2a2=a2 B.﹣(2a)2=﹣2a2 C.(a+b)2=a2+b2 D.﹣2(a﹣1)=﹣2a+1
【解答】解:A、原式=a2,所以A选项正确;
B、原式=﹣4a2,所以B选项错误;
C、原式=a2+2ab+b2,所以C选项错误;
D、原式=﹣2a+2,所以D选项错误.
故选:A.
7.(4分)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
【解答】解:乙和△ABC全等;理由如下:
在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,
所以乙和△ABC全等;
在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
所以丙和△ABC全等;
不能判定甲与△ABC全等;
故选:B.
8.(4分)施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )
A.=2 B.=2
C.=2 D.=2
【解答】解:设原计划每天施工x米,则实际每天施工(x+30)米,
根据题意,可列方程:﹣=2,
故选:A.
9.(4分)下列等式正确的是( )
A.=2 B.=3 C.=4 D.=5
【解答】解:A、==2,此选项正确;
B、==3,此选项错误;
C、=42=16,此选项错误;
D、=25,此选项错误;
故选:A.
10.(4分)如图,在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为( )
A.26cm B.24cm C.20cm D.18cm
【解答】解:∵AC=4cm,若△ADC的周长为13cm,
∴AD+DC=13﹣4=9(cm).
又∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∴平行四边形的周长为2(AB+BC)=18cm.
故选:D.
二、填空题(每小题3分,共30分)
11.(3分)若∠α=35°,则∠α的补角为 145 度.
【解答】解:180°﹣35°=145°,
则∠α的补角为145°,
故答案为:145.
12.(3分)不等式组的解集是 x<3 .
【解答】解:由(1)x<4,由(2)x<3,所以x<3.
13.(3分)如图为洪涛同学的小测卷,他的得分应是 100 分.
【解答】解:①2的相反数是﹣2,此题正确;
②倒数等于它本身的数是1和﹣1,此题正确;
③﹣1的绝对值是1,此题正确;
④8的立方根是2,此题正确;
则洪涛同学的得分是4×25=100,
故答案为:100.
14.(3分)若100个产品中有98个正品,2个次品,从中随机抽取一个,抽到次品的概率是 .
【解答】解:∵100个产品中有2个次品,
∴从中随机抽取一个,抽到次品的概率是=,
故答案为:.
15.(3分)某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成
绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是 丙 .
甲
乙
丙
丁
7
8
8
7
s2
1
1.2
0.9
1.8
【解答】解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,
所以丙组的成绩比较稳定,
所以丙组的成绩较好且状态稳定,应选的组是丙组.
故答案为:丙.
16.(3分)三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形的周长是 13 .
【解答】解:x2﹣6x+8=0,
(x﹣2)(x﹣4)=0,
x﹣2=0,x﹣4=0,
x1=2,x2=4,
当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,
当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,
故答案为:13.
17.(3分)已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是 2 .
【解答】解:依照题意画出图形,如图所示.
在Rt△AOB中,AB=2,OB=,
∴OA==1,
∴AC=2OA=2,
∴S菱形ABCD=AC•BD=×2×2=2.
故答案为:2.
18.(3分)已知:二次函数y=ax2+bx+
c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是 (3,0) .
x
…
﹣1
0
1
2
…
y
…
0
3
4
3
…
【解答】解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,
∴对称轴x==1;
点(﹣1,0)关于对称轴对称点为(3,0),
因此它的图象与x轴的另一个交点坐标是(3,0).
故答案为:(3,0).
19.(3分)根据下列各式的规律,在横线处填空:
,,=,…,+﹣ =
【解答】解:∵+﹣1=,+﹣=,+﹣=,+﹣=,…,
∴+﹣=(n为正整数).
∵2018=2×1009,
∴+﹣=.
故答案为:.
20.(3分)如图,已知在△ABC中,BC边上的高AD与AC边上的高BE交于点F,且∠BAC=45°,BD=6,CD=4,则△ABC的面积为 60 .
【解答】解:∵AD⊥BC,BE⊥AC,∴∠AEF=∠BEC=∠BDF=90°,
∵∠BAC=45°,
∴AE=EB,
∵∠EAF+∠C=90°,∠CBE+∠C=90°,
∴∠EAF=∠CBE,
∴△AEF≌△BEC,
∴AF=BC=10,设DF=x.
∵△ADC∽△BDF,
∴=,
∴=,
整理得x2+10x﹣24=0,
解得x=2或﹣12(舍弃),
∴AD=AF+DF=12,
∴S△ABC=•BC•AD=×10×12=60.
故答案为60.
三、解答题(本题共12分)
21.(12分)(1)计算:|﹣2|﹣2cos60°+()﹣1﹣(2018﹣)0
(2)先化简(1﹣)•,再在1、2、3中选取一个适当的数代入求值.
【解答】解:(1)|﹣2|﹣2cos60°+()﹣1﹣(2018﹣)0
=2﹣2×+6﹣1
=2﹣1+6﹣1
=6;
(2)(1﹣)•
=
=
=,
当x=2时,原式=.
四、(本题共12分)
22.(12分)系统找不到该试题
五、(本题共14分)
23.(14分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
(1)根据图中信息求出m= 100 ,n= 35 ;
(2)请你帮助他们将这两个统计图补全;
(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.
【解答】解:(1)∵被调查的总人数m=10÷10%=100人,
∴支付宝的人数所占百分比n%=×100%=35%,即n=35,
故答案为:100、35;
(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,
补全图形如下:
(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;
(4)列表如下:
共有12种情况,这两位同学最认可的新生事物不一样的有10种,
所以这两位同学最认可的新生事物不一样的概率为=.
六、(本题共14分)
24.(14分)某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的
图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?
【解答】解:(1)当x=6时,y1=3,y2=1,
∵y1﹣y2=3﹣1=2,
∴6月份出售这种蔬菜每千克的收益是2元.
(2)设y1=mx+n,y2=a(x﹣6)2+1.
将(3,5)、(6,3)代入y1=mx+n,
,解得:,
∴y1=﹣x+7;
将(3,4)代入y2=a(x﹣6)2+1,
4=a(3﹣6)2+1,解得:a=,
∴y2=(x﹣6)2+1=x2﹣4x+13.
∴y1﹣y2=﹣x+7﹣(x2﹣4x+13)=﹣x2+x﹣6=﹣(x﹣5)2+.
∵﹣<0,
∴当x=5时,y1﹣y2取最大值,最大值为,
即5月份出售这种蔬菜,每千克的收益最大.
(3)当t=4时,y1﹣y2=﹣x2+x﹣6=2.
设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,
根据题意得:2t+(t+2)=22,
解得:t=4,
∴t+2=6.
答:4月份的销售量为4万千克,5月份的销售量为6万千克.
七、阅读材料题(本题共12分)
25.(12分)“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;……;所以容易求出图10、图n中黑点的个数分别是 60个 、 6n个 .
请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题:
(1)第5个点阵中有 61 个圆圈;第n个点阵中有 (3n2﹣3n+1) 个圆圈.
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
【解答】解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,
故答案为:60个,6n个;
(1)如图所示:第1个点阵中有:1个,
第2个点阵中有:2×3+1=7个,
第3个点阵中有:3×6+1=17个,
第4个点阵中有:4×9+1=37个,
第5个点阵中有:5×12+1=60个,
…
第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
故答案为:60,3n2﹣3n+1;
(2)3n2﹣3n+1=271,
n2﹣n﹣90=0,
(n﹣10)(n+9)=0,
n1=10,n2=﹣9(舍),
∴小圆圈的个数会等于271,它是第10个点阵.
八、(本题共16分)
26.(16分)如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.
(1)点P到达终点O的运动时间是 s,此时点Q的运动距离是 cm;
(2)当运动时间为2s时,P、Q两点的距离为 6 cm;
(3)请你计算出发多久时,点P和点Q之间的距离是10cm;
(4)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线y=
过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.
【解答】解:(1)∵四边形AOCB是矩形,
∴OA=BC=16,
∵动点P从点A出发,以3cm/s的速度向点O运动,
∴t=,此时,点Q的运动距离是×2=cm,
故答案为,;
(2)如图1,由运动知,AP=3×2=6cm,CQ=2×2=4cm,
过点P作PE⊥BC于E,过点Q作QF⊥OA于F,
∴四边形APEB是矩形,
∴PE=AB=6,BE=6,
∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,
根据勾股定理得,PQ=6,
故答案为6;
(3)设运动时间为t秒时,
由运动知,AP=3t,CQ=2t,
同(2)的方法得,PE=6,EQ=16﹣3t﹣2t=16﹣5t,
∵点P和点Q之间的距离是10cm,
∴62+(16﹣5t)2=100,
∴t=或t=;
(4)k的值是不会变化,
理由:∵四边形AOCB是矩形,
∴OC=AB=6,OA=16,
∴C(6,0),A(0,16),
∴直线AC的解析式为y=﹣x+16①,
设运动时间为t,
∴AP=3t,CQ=2t,
∴OP=16﹣3t,
∴P(0,16﹣3t),Q(6,2t),
∴PQ解析式为y=x+16﹣3t②,
联立①②得,﹣x+16=x+16﹣3t,
∴x+x=3t,
∴5tx﹣16x+16x=3t,
∴x=,
∴y=,
∴D(,)
∴k=×=是定值.