中考数学压轴题集锦 4页

  • 363.50 KB
  • 2021-05-10 发布

中考数学压轴题集锦

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
中考数学冲刺复习资料:二次函数压轴题 ‎1、(本题满分10分)‎ 如图,在平面直角坐标系中,抛物线=-++经过A(0,-4)、B(,0)、 C(,0)三点,且-=5.‎ ‎(1)求、的值;(4分)‎ ‎(第25题图)‎ A x y B C O ‎(2)在抛物线上求一点D,使得四边形BDCE是以BC为对 角线的菱形;(3分)‎ ‎(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)‎ y x O 第26题图 D E C F A B ‎2、如图所示,在平面直角坐标系中,矩形的边在轴的负半轴上,边在轴的正半轴上,且,,矩形绕点按顺时针方向旋转后得到矩形.点的对应点为点,点的对应点为点,点的对应点为点,抛物线过点.‎ ‎(1)判断点是否在轴上,并说明理由;‎ ‎(2)求抛物线的函数表达式;‎ ‎(3)在轴的上方是否存在点,点,使以点为顶点的平行四边形的面积是矩形面积的2倍,且点在抛物线上,若存在,请求出点,点的坐标;若不存在,请说明理由.‎ ‎3、如图16,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过三点.‎ A O x y B F C 图16‎ ‎(1)求过三点抛物线的解析式并求出顶点的坐标;‎ ‎(2)在抛物线上是否存在点,使为直角三角形,若存在,直接写出点坐标;若不存在,请说明理由;‎ ‎(3)试探究在直线上是否存在一点,使得的周长最小,若存在,求出点的坐标;若不存在,请说明理由.‎ ‎4、如图14,已知半径为1的与轴交于两点,为的切线,切点为,圆心的坐标为,二次函数的图象经过两点.‎ ‎(1)求二次函数的解析式;‎ 图14‎ y x O A B M O1‎ ‎(2)求切线的函数解析式;‎ ‎(3)线段上是否存在一点,使得以为顶点的三角形与相似.若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.‎ ‎5、中,,,cm.长为‎1cm的线段在的边上沿方向以‎1cm/s的速度向点运动(运动前点与点重合).过分别作的垂线交直角边于两点,线段运动的时间为s.‎ ‎(1)若的面积为,写出与的函数关系式(写出自变量的取值范围);‎ ‎(2)线段运动过程中,四边形有可能成为矩形吗?若有可能,求出此时的值;若不可能,说明理由;‎ ‎(3)为何值时,以为顶点的三角形与相似?‎ ‎6、已知:如图14,抛物线与轴交于点,点,与直线相交于点,点,直线与轴交于点.‎ ‎(1)写出直线的解析式.‎ ‎(2)求的面积.‎ ‎(3)若点在线段上以每秒1个单位长度的速度从向运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从向运动.设运动时间为秒,请写出的面积与的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?‎ ‎7、已知抛物线与轴的一个交点为A(-1,0),与y轴的正半轴交于点C.‎ ‎⑴直接写出抛物线的对称轴,及抛物线与轴的另一个交 点B的坐标;‎ ‎⑵当点C在以AB为直径的⊙P上时,求抛物线的解析式;‎ ‎⑶坐标平面内是否存在点,使得以点M和⑵中抛物线 上的三点A、B、C为顶点的四边形是平行四边形?若存在,‎ 请求出点的坐标;若不存在,请说明理由.‎ ‎ ‎ ‎ ‎ ‎8、如图19-1,是一张放在平面直角坐标系中的矩形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,,.‎ ‎(1)在边上取一点,将纸片沿翻折,使点落在边上的点处,求两点的坐标;‎ ‎(2)如图19-2,若上有一动点(不与重合)自点沿方向向点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为秒(),过点作的平行线交于点,过点作的平行线交于点.求四边形的面积与时间之间的函数关系式;当取何值时,有最大值?最大值是多少?‎ ‎(3)在(2)的条件下,当为何值时,以为顶点的三角形为等腰三角形,并求出相应的时刻点的坐标.‎ y x B C O A D E 图19-1‎ y x B C O A D E 图19-2‎ P M N x l Q C P A O B H R y ‎9、如图,在直角坐标系中,点为函数在第一象限内的图象上的任一点,点的坐标为,直线过且与轴平行,过作轴的平行线分别交轴,于,连结交轴于,直线交轴于.‎ ‎(1)求证:点为线段的中点;‎ ‎(2)求证:①四边形为平行四边形;‎ ‎②平行四边形为菱形;‎ ‎(3)除点外,直线与抛物线有无其它公共点?并说明理由.‎