• 540.00 KB
  • 2021-05-10 发布

中考数学压轴题100题精选110题

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ ‎ ‎【001】如图,已知抛物线(a≠0)经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结. ‎ ‎(1)求该抛物线的解析式;‎ ‎(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?‎ ‎(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长.‎ x y M C D P Q O A B ‎【002】A C B P Q E D 图16‎ 如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).‎ ‎(1)当t = 2时,AP = ,点Q到AC的距离是 ;‎ ‎(2)在点P从C向A运动的过程中,求△APQ的面积S与 t的函数关系式;(不必写出t的取值范围)‎ ‎(3)在点E从B向C运动的过程中,四边形QBED能否成 为直角梯形?若能,求t的值.若不能,请说明理由;‎ ‎(4)当DE经过点C 时,请直接写出t的值. ‎ ‎【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. ‎ ‎(1)直接写出点A的坐标,并求出抛物线的解析式;‎ ‎ (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?‎ ‎②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?‎ 请直接写出相应的t值。‎ ‎【004】如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.‎ ‎ (1)求的面积;‎ ‎(2)求矩形的边与的长;‎ ‎(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,‎ 设移动时间为秒,矩形与重叠部分的面积为,求关 的函数关系式,并写出相应的的取值范围.‎ A D B E O C F x y y ‎(G)‎ ‎(第26题)‎ ‎【005】如图1,在等腰梯形中,,是的中点,过点作交于点.,.‎ ‎(1)求点到的距离;‎ ‎(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设.‎ ‎①当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由;‎ ‎②当点在线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.‎ A D E B F C 图4(备用)‎ A D E B F C 图5(备用)‎ A D E B F C 图1‎ 图2‎ A D E B F C P N M 图3‎ A D E B F C P N M ‎(第25题)‎ ‎【006】如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为。‎ ‎(1)求该二次函数的关系式;‎ ‎(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;‎ ‎(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。‎ ‎【007】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),‎ 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.‎ ‎ (1)求直线AC的解析式;‎ ‎ (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);‎ ‎ (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.‎ ‎ ‎ ‎【008】如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD。‎ (1) 求证:BE=AD;‎ (2) 求证:AC是线段ED的垂直平分线;‎ (3) ‎△DBC是等腰三角形吗?并说明理由。‎ ‎【009】一次函数的图象分别与轴、轴交于点,与反比例函数的图象相交于点.过点分别作轴,轴,垂足分别为;过点分别作轴,轴,垂足分别为与交于点,连接.‎ ‎(1)若点在反比例函数的图象的同一分支上,如图1,试证明:‎ ‎①;‎ ‎②.‎ ‎(2)若点分别在反比例函数的图象的不同分支上,如图2,则与还相等吗?试证明你的结论.‎ O C F M D E N K y x ‎(第25题图1)‎ O C D K F E N y x M ‎(第25题图2)‎ ‎【010】如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是.‎ ‎(1)求抛物线对应的函数表达式;‎ ‎(2)经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;‎ ‎(3)设直线与y轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由;‎ ‎(4)当是直线上任意一点时,(3)中的结论是否成立?(请直接写出结论).‎ O B x y A M C ‎1‎ ‎(第26题图)‎