• 759.45 KB
  • 2021-05-10 发布

中考数学试题分类汇编矩形菱形正方形

  • 19页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎20. (2009山西省太原市)如图,是边上一点,.‎ ‎(1)在图中作的角平分线,交于点;(要求:尺规作图,保留作图痕迹,不写作法和证明)‎ ‎(2)在(1)中,过点画的垂线,垂足为点,交于点,连接,将图形补充完整,并证明四边形是菱形.‎ A O E N M ‎21. (2009山西省太原市)‎ 问题解决 图(1)‎ A B C D E F M N 如图(1),将正方形纸片折叠,使点落在边上一点(不与点,重合),压平后得到折痕.当时,求的值.‎ 方法指导:‎ 为了求得的值,可先求、的长,不妨设:=2‎ 类比归纳 在图(1)中,若则的值等于 ;若则的值等于 ;若(为整数),则的值等于 .(用含的式子表示)‎ 联系拓广 图(2)‎ N A B C D E F M ‎ 如图(2),将矩形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕设则的值等于 .(用含的式子表示)‎ ‎22. (2009襄樊市)如图所示,在中,将绕点顺时针方向旋转得到点在上,再将沿着所在直线翻转得到连接 ‎ ‎ (1)求证:四边形是菱形;‎ ‎ (2)连接并延长交于连接请问:四边形是什么特殊平行四边形?为什么?‎ A D F C E G B ‎24. (2009年安顺)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连结BF。‎ (1) 求证:BD=CD;‎ (2) 如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。‎ ‎(2009重庆綦江)如图,在矩形ABCD中,是边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.‎ ‎(1)求证:;‎ ‎(2)如果,求的值.‎ ‎25.(2009年北京市)阅读下列材料:‎ 小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:‎ ‎(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并 指明拼接成的平行四边形(画出一个符合条件的平 行四边形即可);‎ ‎(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ请在图4中探究平行四边形MNPQ面积的大小(画图并直接写出结果). ‎ ‎26. (2009年北京市)在中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转得到线段EF(如图1)(1)在图1中画图探究:‎ ‎①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;‎ ‎②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E 逆时针旋转得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.‎ ‎(2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=,S=,求与之间的函数关系式,并写出自变量的取值范围.‎ ‎29.(2009年安徽)学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长cm ‎,其一个内角为60°.‎ ‎60°‎ ‎……‎ d L 第19题图 ‎(1)若d=26,则该纹饰要231个菱形图案,求纹饰的长度L;‎ ‎(2)当d=20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?‎ ‎③‎ ‎④‎ ‎①‎ ‎②‎ ‎30.(2009年安徽).如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰 能拼成一个矩形(非正方形).‎ ‎(1)画出拼成的矩形的简图;‎ ‎(2)求的值.‎ ‎31.(2009年郴州市)如图9,E是正方形ABCD对角线BD上的一点,求证:AE=CE.‎ D C E B A ‎ ‎ ‎32.(2009年陕西省)‎ 问题探究 ‎(1)请在图①的正方形ABCD内,画出使∠APB=90°的一个点P,并说明理由.‎ ‎(2)请在图②的正方形ABCD内(含边),画出使∠APB=60°的所有的点P,并说明理由.‎ 问题解决 如图③,现有一块矩形钢板ABCD,AB=4,BC=3,工人师傅想用它裁出两块全等的、面积最大的△APB和△CP’D钢板,且∠APB=∠CP’D=60°,请你在图③中画出符合要求的点P和P’,并求出△APB的面积(结果保留根号).‎ ‎33.(2009重庆綦江)如图,在矩形ABCD中,是边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.‎ ‎(1)求证:;‎ ‎(2)如果,求的值.‎ D A B C E F ‎34.(2009威海)如图1,在正方形中,分别为边上的点,,连接交点为.‎ ‎(1)如图2,连接,试判断四边形的形状,并证明你的结论;‎ ‎1)‎ D C B A O H G F E E B A D C G F H ‎)‎ ‎(2)将正方形沿线段剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形的边长为3cm,,则图3中阴影部分的面积为_________.‎ ‎35.(2009年贵州省黔东南州)如图,l1、l2、l3、l4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h,正方形ABCD的四个顶点分别在这四条直线上,且正方形ABCD的面积是25。‎ ‎(1)连结EF,证明△ABE、△FBE、△EDF、△CDF的面积相等。‎ ‎(2)求h的值。‎ ‎36.(2009年江苏省)如图,在梯形中,两点在边上,且四边形是平行四边形.‎ A D C F E B ‎(1)与有何等量关系?请说明理由;‎ ‎(2)当时,求证:是矩形.‎ ‎37.(2009年浙江省绍兴市)若从矩形一边上的点到对边的视角是直角,则称该点为直角点.例如,如图的矩形中,点在边上,连,,则点为直角点.‎ ‎(1)若矩形一边上的直角点为中点,问该矩形的邻边具有何种数量关系?并说明理由;‎ ‎(2)若点分别为矩形边,上的直角点,且,求的长.‎ ‎ ‎ ‎38.(2009年广西南宁)如图13-1,在边长为5的正方形中,点、分别是、边上的点,且,.‎ ‎(1)求∶的值;‎ ‎(2)延长交正方形外角平分线(如图13-2),试判断的大小关系,并说明理由;‎ ‎(3)在图13-2的边上是否存在一点,使得四边形是平行四边形?若存在,请给予证明;若不存在,请说明理由.‎ 图13-1‎ A D C B E 图13-2‎ B C E D A F P F ‎39.(2009年清远)如图,已知正方形,点是上的一点,连结,以为一边,在的上方作正方形,连结.‎ 求证:‎ E B C G D F A ‎40.(2009年衢州)如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.‎ 求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.‎ A C B D P Q ‎42.(2009年广州市)如图12,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。‎ ‎(1)若AG=AE,证明:AF=AH;‎ ‎(2)若∠FAH=45°,证明:AG+AE=FH;‎ ‎(3)若RtΔGBF的周长为1,求矩形EPHD的面积。‎ ‎44.(2009年济宁市)在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).‎ O A B C M N ‎(1)求边在旋转过程中所扫过的面积;‎ ‎(2)旋转过程中,当和平行时,求正方形 ‎ 旋转的度数;‎ ‎(3)设的周长为,在旋转正方形 的过程中,值是否有变化?请证明你的结论.‎ ‎45.(2009年衡阳市)如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.‎ ‎ (1)求证:DA⊥AE;‎ ‎ (2)试判断AB与DE是否相等?并证明你的结论.‎ A B C D E F ‎ ‎ ‎46.(2009年南充)如图5,ABCD是正方形,点G是BC上的任意一点,于E,,交AG于F.‎ 求证:.‎ D C B A E F G ‎48.(2009年湖州)如图:已知在中,‎ ‎,为边的中点,过点作,‎ 垂足分别为.‎ (1) 求证:;‎ ‎(2)若,求证:四边形是正方形. ‎ D C B E A F ‎49.(2009临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.,且EF交正方形外角的平行线CF于点F,求证:AE=EF.‎ 经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以.‎ 在此基础上,同学们作了进一步的研究:‎ ‎(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;‎ ‎ (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.‎ A D F C G E B 图1‎ A D F C G E B 图2‎ A D F C G E B 图3‎ ‎.‎ ‎51.(2009年遂宁)如图,已知矩形ABCD中,AB=4cm,AD=10cm,点P在边BC上移动,点E、F、G、H分别是AB、AP、DP、DC的中点.‎ ‎⑴求证:EF+GH=5cm;‎ ‎⑵求当∠APD=90o时,的值.‎ ‎52.(2009年咸宁市)如图,将矩形沿对角线剪开,再把沿方向平移得到.‎ ‎(1)证明;‎ C B A D ‎(第19题)‎ ‎(2)若,试问当点在线段上的什么位置时,四边形是菱形,并请说明理由.‎ ‎53.(09湖北宜昌)已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合), MN为折痕,点M,N分别在边BC, AD上,连接AP,MP,AM, AP与MN相交于点F.⊙O过点M,C,P.‎ ‎(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);‎ ‎(2)与 是否相等?请你说明理由;‎ ‎(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.‎ 设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) ‎ 图1 图2 图3‎ ‎(第3题)‎ ‎54.(09湖南邵阳)如图(十二),直线的解析式为,它与轴、轴分别相交于两点.平行于直线的直线从原点出发,沿轴的正方形以每秒1个单位长度的速度运动,它与轴、轴分别相交于两点,设运动时间为秒().‎ ‎(1)求两点的坐标;‎ ‎(2)用含的代数式表示的面积;‎ ‎(3)以为对角线作矩形,记和重合部分的面积为,‎ O M A P N y l m x B O M A P N y l m x B E P F 图十二 ‎①当时,试探究与之间的函数关系式;‎ ‎②在直线的运动过程中,当为何值时,为面积的?‎ ‎55.(2009年肇庆市)如图 ,ABCD是菱形,对角线AC与BD相交于O,. ‎ O D C B A ‎(1)求证:△ABD是正三角形; ‎ ‎(2)求 AC的长(结果可保留根号). ‎ ‎56.(2009年肇庆市)如图 ,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG于 F. ‎ A D E F C G B ‎(1)求证:; ‎ ‎(2)求证:.‎ ‎57.(2009年山西省)在中,将绕点顺时针旋转角得交于点,分别交于两点.‎ ‎(1)如图1,观察并猜想,在旋转过程中,线段与有怎样的数量关系?并证明你的结论;‎ A D B E C F A D B E C F ‎(2)如图2,当时,试判断四边形的形状,并说明理由;‎ ‎(3)在(2)的情况下,求的长.‎ ‎58.(2009年山西省)如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.‎ ‎ (1)求的面积;‎ ‎(2)求矩形的边与的长;‎ ‎(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围.‎ A D B E O C F x y y ‎(G)‎ ‎60.(2009年黄石市)如图,中,点是边上一个动点,过作直线,设交的平分线于点,交的外角平分线于点.‎ ‎(1)探究:线段与的数量关系并加以证明;‎ ‎(2)当点在边上运动时,四边形会是菱形吗?若是,请证明,若不是,则说明理由;‎ ‎(3)当点运动到何处,且满足什么条件时,四边形是正方形?‎ A F N D C B M E O ‎61.(2009年黄石市)正方形在如图所示的平面直角坐标系中,在轴正半轴上,在轴的负半轴上,交轴正半轴于交轴负半轴于,,抛物线过三点.‎ ‎(1)求抛物线的解析式;(3分)‎ ‎(2)是抛物线上间的一点,过点作平行于轴的直线交边于,交所在直线于,若,则判断四边形的形状;(3分)‎ ‎(3)在射线上是否存在动点,在射线上是否存在动点,使得且,若存在,请给予严格证明,若不存在,请说明理由.(4分)‎ O y x B E A D C F ‎62.(2009年广东省)正方形边长为4,、分别是、上的两个动点, 当点在上运动时,保持和垂直,‎ ‎(1)证明:;‎ ‎(2)设,梯形的面积为,求与之间的函数关系式;当点运动到什么位置时,四边形面积最大,并求出最大面积;‎ ‎(3)当点运动到什么位置时,求此时的值.‎ D M A B C N ‎63.(2009年广东省)在菱形中,对角线与相交于点,.过点作交的延长线于点.‎ ‎(1)求的周长;‎ ‎(2)点为线段上的点,连接并延长交于点.‎ 求证:.‎ A Q D E B P C O ‎.‎ ‎65.(2009年安徽)20.如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰 能拼成一个矩形(非正方形).‎ ‎(1)画出拼成的矩形的简图;‎ ‎【解】‎ ‎(2)求的值.‎ ‎【解】‎ ‎66.(2009湖北荆州年)把一个正方形分成面积相等的四个三角形的方法有很多,除了可以分成能相互全等的四个三角形外,你还能用三种不同的方法将正方形分成面积相等的四个三角形吗?请分别画出示意图。‎ ‎67.(2009年湖北荆州)如图①,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为2︰1),∠BAD=120°,对角线均在坐标轴上,抛物线经过AD的中点M.‎ ‎⑴填空:A点坐标为 ,D点坐标为 ;‎ ‎⑵操作:如图②,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转度角,并延长OE交AD于P,延长OH交CD于Q.‎ 探究1:在旋转的过程中是否存在某一角度,使得四边形AFEP是平行四边形?若存在,请推断出的值;若不存在,说明理由;‎ 探究2:设AP=,四边形OPDQ的面积为,求与之间的函数关系式,并指出的取值范围.‎ x y O M H G F E D C B A 图①‎ H G F E D C B A 图②‎ x y O Q P ‎68.(2009年云南省)如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.‎ ‎(1)求证:△ABC≌△DCB ;‎ B C A D M N ‎(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.‎ ‎69.(2009年佳木斯中考卷第25题)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.‎ ‎(1)试找出一个与△AED全等的三角形,并加以证明.‎ ‎(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.‎ ‎70.(2009厦门)23.已知四边形ABCD,AD//BC,连接BD.‎ (1) 小明说:“若添加条件,则四边形ABCD是矩形”.你认为小明的说法是否正确,若正确请说明理由,若不正确,请举出一个反例.‎ (2) 若BD平分∠ABC,∠DBC=∠BDC,tan∠DBC=1,求证:四边形ABCD 是正方形.‎ ‎ ‎ ‎71.(2009四川绵阳)如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF = 90°,使EF交矩形的外角平分线BF于点F,设C(m,n).‎ ‎(1)若m = n时,如图,求证:EF = AE;‎ ‎(2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF = AE?若存在,请求出点E的坐标;若不存在,请说明理由.‎ x O E B A y C F x O E B A y C F x O E B A y C F ‎(3)若m = tn(t>1)时,试探究点E在边OB的何处时,使得EF =(t + 1)AE成立?并求出点E的坐标.‎ ‎72.(2009年广东省)在菱形中,对角线与相交于点,.过点作交的延长线于点.‎ ‎(1)求的周长;‎ ‎(2)点为线段上的点,连接并延长交于点.‎ 求证:.‎ A Q D E B P C O ‎73.(2009年山西省)在中,将绕点顺时针旋转角得交于点,分别交于两点.‎ ‎(1)如图1,观察并猜想,在旋转过程中,线段与有怎样的数量关系?并证明你的结论;‎ A D B E C F A D B E C F ‎(2)如图2,当时,试判断四边形的形状,并说明理由;‎ ‎(3)在(2)的情况下,求的长.‎ ‎74.(2009年山西省)如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.‎ ‎ (1)求的面积;‎ ‎(2)求矩形的边与的长;‎ ‎(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围.‎ A D B E O C F x y y ‎(G)‎ ‎8.(2009年黄石市)如图,中,点是边上一个动点,过作直线,设交的平分线于点,交的外角平分线于点.‎ ‎(1)探究:线段与的数量关系并加以证明;‎ ‎(2)当点在边上运动时,四边形会是菱形吗?若是,请证明,若不是,则说明理由;‎ ‎(3)当点运动到何处,且满足什么条件时,四边形是正方形?‎ A F N D C B M E O ‎76.(2009年铁岭市)是等边三角形,点是射线上的一个动点(点不与点重合),是以为边的等边三角形,过点作的平行线,分别交射线于点,连接.‎ ‎(1)如图(a)所示,当点在线段上时.‎ ‎ ①求证:;‎ ‎②探究四边形是怎样特殊的四边形?并说明理由;‎ ‎(2)如图(b)所示,当点在的延长线上时,直接写出(1)中的两个结论是否成立?‎ ‎(3)在(2)的情况下,当点运动到什么位置时,四边形是菱形?并说明理由.‎ A G C D B F E 图(a)‎ A D C B F E G 图(b)‎ ‎77.(2009青海)请阅读,完成证明和填空.‎ A A A B B B C C C D D O O O M M M N N N E 图12-1‎ 图12-2‎ 图12-3‎ ‎…‎ 九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:‎ ‎(1)如图12-1,正三角形中,在边上分别取点,使,连接,发现,且.‎ 请证明:.‎ ‎(2)如图12-2,正方形中,在边上分别取点,使,连接,那么 ,且 度.‎ ‎(3)如图12-3,正五边形中,在边上分别取点,使,连接,那么 ,且 度.‎ ‎(4)在正边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.‎ 请大胆猜测,用一句话概括你的发现: ‎ ‎ .‎ ‎78.(2009呼和浩特)如图所示,正方形的边在正方形的边上,连接.‎ ‎(1)求证:.‎ ‎(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,说出旋转过程;若不存在,请说明理由.‎ E F G D A B C ‎79.(2009龙岩)在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.‎ ‎(1)如图25-1,当点M在AB边上时,连接BN.‎ ‎①求证:;‎ ‎②若∠ABC = 60°,AM = 4,∠ABN =,求点M到AD的距离及tan的值;‎ ‎(2)如图25-2,若∠ABC = 90°,记点M运动所经过的路程为x(6≤x≤12).‎ 试问:x为何值时,△ADN为等腰三角形.‎ C B M A N D ‎(图25-1)‎ C M B N A D ‎(图25-2)‎ ‎80.(2009年抚顺市)如图所示,已知:中,.‎ ‎(1)尺规作图:作的平分线交于点(只保留作图痕迹,不写作法);‎ ‎(2)在(1)所作图形中,将沿某条直线折叠,使点与点重合,折痕交于点,交于点,连接,再展回到原图形,得到四边形.‎ 试判断四边形的形状,并证明;‎ B C A 若,求四边形的周长和的长.‎