- 928.90 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
圆的易错题好题整理
2018年1月23日制作
知识点一 圆的有关性质
例题1 (2015 黔南州 难度★)
如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是( )
A.∠A=∠D B.= C.∠ACB=90° D.∠COB=3∠D
思路方法:根据垂径定理、圆周角定理,进行判断即可解答.
解析:
A、∠A=∠D,正确;B、,正确;
C、∠ACB=90°,正确;D、∠COB=2∠CDB,故错误;
故选:D
点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了圆周角定理,解集本题的关键是熟记垂径定理和圆周角定理.
例题2 (2015 黔西南州 难度★)
如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为 .
思路方法:连接OC,由垂径定理得出CE=CD=2,设OC=OA=x,则OE=x﹣1,由勾股定理得出CE2+OE2=OC2,得出方程,解方程即可.
解析:
连接OC,如图所示:
∵AB是⊙O的直径,CD⊥AB,
∴CE=CD=2,∠OEC=90°,
设OC=OA=x,则OE=x﹣1,
根据勾股定理得:CE2+OE2=OC2,
即22+(x﹣1)2=x2,
解得:x=;
故答案为:.
点评:本题考查了垂径定理、勾股定理、解方程;熟练掌握垂径定理,并能进行推理计算是解决问题的关键.
练习1
1.(2015 珠海 难度★)
如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是( )
A.25° B.30° C.40° D.50°
2.(2015 黄冈中学自主招生 难度★★★)
将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是( )
A.3 B.8 C. D.2
3.(2015 通辽 难度★)
如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为 .
4.(2013 株洲 难度★★)
如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是 度.
5.(2014 衡阳 难度★★★)
如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为 .
知识点二 与圆的位置关系
例题1 (2014 德州 难度★★★)
如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.
(1)求AC、AD的长;
(2)试判断直线PC与⊙O的位置关系,并说明理由.
思路方法:(1)连接BD,先求出AC,在Rt△ABC中,运用勾股定理求AC,②由CD平分∠ACB,得出AD=BD,所以Rt△ABD是直角等腰三角形,求出AD;(2)连接OC,由角的关系求出∠PCB=∠ACO,可得到∠OCP=90°,所以直线PC与⊙O相切.
解析:
(1)①如图,连接BD,
∵AB是直径,
∴∠ACB=∠ADB=90°,
在Rt△ABC中,
AC===5(cm),
②∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴,
∴AD=BD,
∴Rt△ABD是直角等腰三角形,
∴AD=AB=×10=5cm;
(2)直线PC与⊙O相切,
理由:连接OC,
∵OC=OA,
∴∠CAO=∠OCA,
∵PC=PE,
∴∠PCE=∠PEC,
∵∠PEC=∠CAE+∠ACE,
∵CD平分∠ACB,
∴∠ACE=∠ECB,
∴∠PCB=∠CAO=∠ACO,
∵∠ACB=90°,
∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,
即OC⊥PC,
∴直线PC与⊙O相切.
点评:本题主要考查了切线的判定,勾股定理和圆周角,解题的关键是运圆周角和角平分线及等腰三角形正确找出相等的角.
例题2 (2014 长沙 难度★★★★)
如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.
(1)求证:DE⊥AC;
(2)若AB=3DE,求tan∠ACB的值.
思路方法:(1)连接OD,可以证得DE⊥OD,然后证明OD∥AC即可证明DE⊥AC;(2)利用△DAE∽△CDE,求出DE与CE的比值即可.
解析:
(1)证明:连接OD,
∵D是BC的中点,OA=OB,
∴OD是△ABC的中位线,
∴OD∥AC,
∵DE是⊙O的切线,
∴OD⊥DE,
∴DE⊥AC;
(2)解法1:连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵DE⊥AC,
∴∠ADC=∠DEC=∠AED=90°,
∴∠ADE=∠DCE
在△ADE和△CDE中,
∴△CDE∽△DAE,
∴,
设tan∠ACB=x,CE=a,则DE=ax,AC=3ax,AE=3ax﹣a,
∴,整理得:x2﹣3x+1=0,
解得:x=,
∴tan∠ACB=或.
(可以看出△ABC分别为锐角、钝角三角形两种情况)
解法2:连OD,过点O作AC的垂线,垂足为F,
∴OF2+AF2=OA2,
∵AC=AF+FE+CE,且AC=AB=3DE,OB=OD=EF,
∴,
∴=或,
∴tan∠ACB=或.
点评:本题主要考查了切线的性质的综合应用,解答本题的关键在于如何利用三角形相似求出线段DE与CE的比值.
练习2
1. (2015 衢州 难度★★★)
如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是( )
A.3 B.4 C. D.
2.(2015 镇江 难度★★★)
如图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若BD=﹣1,则∠ACD= °.
3.(2013秋 延庆县校级期末 难度★★★)
已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.
(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;
(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠DAE=∠BAF.
4.(2015 辽阳 难度★★★)
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.
(1)求证:直线FG是⊙O的切线;
(2)若AC=10,cosA=,求CG的长.
5.(2014 涪城区校级自主招生 难度★★★★)
已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.
(1)求证:AC与⊙O相切;
(2)当BD=6,sinC=时,求⊙O的半径.
知识点三 弧长、扇形面积
例题1 (2014 牡丹江 难度★★★)
如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则S阴影=( )
A.π B.2π C. D.π
思路方法:求出CE=DE,OE=BE=1,得出S△BED=S△OEC,所以S阴影=S扇形BOC.
解析:
如图,CD⊥AB,交AB于点E,
∵AB是直径,
∴CE=DE=CD=,
又∵∠CDB=30°
∴∠COE=60°,
∴OE=1,OC=2,
∴BE=1,
∴S△BED=S△OEC,
∴S阴影=S扇形BOC==.
故选:D.
点评:本题考查了垂径定理、扇形面积的计算,图形的转化是解答本题的关键.
例题2 (2014 锦州 难度★★★)
如图,在一张正方形纸片上剪下一个半径为r的圆形和一个半径为R的扇形,使之恰好围成图中所示的圆锥,则R与r之间的关系是 .
思路方法:利用圆锥的底面周长等于侧面展开图的扇形弧长,根据弧长公式计算.
解析:
扇形的弧长是:=,
圆的半径为r,则底面圆的周长是2πr,
圆锥的底面周长等于侧面展开图的扇形弧长则得到:=2πr,
∴=2r,
即:R=4r,
r与R之间的关系是R=4r.
故答案为:R=4r.
点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.
练习3
1.(2014 杭州 难度★★)
已知某几何体的三视图(单位:cm),则这个圆锥的侧面积等于( )
A.12πcm2 B.15πcm2 C.24πcm2 D.30πcm2
2.(2015 包头 难度★★★)
如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为( )
A.π B.π C.π D.π
3.(2015 盐城 难度★)
如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为 .
4.(2015 湖北 难度★★★)
如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为 .
5.(2014 佛山 难度★★★★)
如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是 .
知识点四 多边形和圆
例题1 (2015 宁夏 难度★★)
如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(﹣1,0),则点C的坐标为 .
思路方法:先连接OE,由于正六边形是轴对称图形,并设EF交Y轴于G,那么∠GOE=30°;在Rt△GOE中,则GE=,OG=.即可求得E的坐标,和E关于Y轴对称的F点的坐标,其他坐标类似可求出.
解析:
连接OE,由正六边形是轴对称图形知:
在Rt△OEG中,∠GOE=30°,OE=1.
∴GE=,OG=.
∴,,,,,.
故答案为:(,﹣)
点评:本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识.
例题2 (2015 金华 难度★★★★★)
如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是( )
A. B. C. D.2
思路方法:首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,再用EF的值比上GH的值,求出的值是多少即可.
解析:
如图,连接AC、BD、OF,,
设⊙O的半径是r,
则OF=r,
∵AO是∠EAF的平分线,
∴∠OAF=60°÷2=30°,
∵OA=OF,
∴∠OFA=∠OAF=30°,
∴COF=30°+30°=60°,
∴FI=r•sin60°=,
∴EF=,
∵AO=2OI,
∴OI=,CI=r﹣=,
∴,
∴,
∴=,
即则的值是.故选:C.
点评:此题主要考查了正多边形与圆的关系,要熟练掌握,解答此题的关键是要明确正多边形的有关概念:①中心:正多边形的外接圆的圆心叫做正多边形的中心.②正多边形的半径:外接圆的半径叫做正多边形的半径.③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.
练习4
1.(2014 南开区二模 难度★★)
若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )
A.6,3 B.6,3 C.3,6 D.6,3
2.(2014 通辽模拟 难度★★)
如图,正方形ABCD是⊙O的内接正方形,点P在劣弧上不同于点C得到任意一点,则∠BPC的度数是 度.
3.(2015 宝应县二模 难度★★)
如图,正六边形ABCDEF的边长为2cm,点P为六边形内任一点.则点P到各边距离之和为 cm.
4.(2015 深圳校级模拟 难度★★★)
如图一组有规律的正多边形,各正多边形中的阴影部分面积均为a,按此规律,则第n个正多边形的面积为 .
5.(2014 延庆县一模 难度★★★★)
如图,点E、D分别是正三角形ABC、正四边形ABCM、正五边形ABCMN中以C点为顶点的一边延长线和另一边反向延长线上的点,且BE=CD,DB的延长线交AE于点F,则图1中∠AFB的度数为 ;若将条件“正三角形、正四边形、正五边形”改为“正n边形”,其他条件不变,则∠AFB的度数为 .(用n的代数式表示,其中,n≥3,且n为整数)
实战演练
1.(2014 益阳 难度★)
如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )
A.1 B.1或5 C.3 D.5
2.(2014 天津 难度★)
如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于( )
A.20° B.25° C.40° D.50°
3.(2015 珠海 难度★)
如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是( )
A.25° B.30° C.40° D.50°
4.(2015 诸城市二模 难度★)
如图,AB是⊙O的直径,D、C在⊙O上,AD∥OC,∠DAB=60°,连接AC,则∠DAC等于( )
A.15° B.30° C.45° D.60°
5.(2014 无锡 难度★★)
如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是( )
A.3 B.2 C.1 D.0
6.(2015 齐齐哈尔 难度★★★)
如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是( )
A.8≤AB≤10 B.8<AB≤10 C.4≤AB≤5 D.4<AB≤5
7.(2015 梧州 难度★★★)
如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为( )
A.9 B.18 C.36 D.72
8.(2015•宣城模拟 难度★★★)
如图,等腰三角形ABC内接于半径为5cm的⊙O,AB=AC,tanB=,则AB为( )
A.cm B.cm C.2cm D.2cm
9.(2015 海曙区模拟 难度★★★)
如图,平面直角坐标系中,已知P(6,8),M为OP中点,以P为圆心,6为半径作⊙P,则下列判断正确的有( )
①点O在⊙P外;②点M在⊙P上;③x轴与⊙P相离;④y轴与⊙P相切.
A.1个 B.2个 C.3个 D.4个
10.(2014 连云港 难度★★★)
如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是( )
①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.
A.①③ B.①④ C.②④ D.③④
11.(2014 长春二模 难度★★★)
如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为( )
A.70° B.60° C.50° D.40°
12.(2015 常德 难度★★★)
如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为( )
A.50° B.80° C.100° D.130°
13.(2015 黄石校级模拟 难度★★★★)
一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是( )
A.5cm或11cm B.2.5cm C.5.5cm D.2.5cm或5.5cm
14.(2015 大庆模拟 难度★★★★)
如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为( )
A. cm B.9 cm C.cm D.cm
15.(2014 武汉 难度★★★★★)
如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是( )
A. B. C. D.
16.(2015 海淀区一模 难度★)
若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC是等径三角形,则等径角的度数为 .
17.(2015 淄博 难度★)
如图,在⊙O中,=,∠DCB=28°,则∠ABC= 度.
18.(2015 徐汇区二模 难度★★)
如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是上一点.将扇形AOB沿EF对折,使得折叠后的圆弧恰好与半径OB相切于点G,若OE=5,则O到折痕EF的距离为 .
19.(2015 恩施州 难度★★)
如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于 .
20.(2014 西宁 难度★★)
⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为 .
21.(2014 重庆 难度★★)
如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接CB.若⊙O的半径为2,∠ABC=60°,则BC= .
22.(2014 资阳 难度★★)
已知⊙O1与⊙O2的圆心距为6,两圆的半径分别是方程x2﹣5x+5=0的两个根,则⊙O1与⊙O2的位置关系是 .
23.(2015 贵阳 难度★★★)
小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是 .
24.(2015 阜宁县二模 难度★★★)
如图,PA,PB切⊙O于A、B两点,CD切⊙O于E点,⊙O的半径是r,△PCD周长为4r,则tan∠APB= .
25.(2015 牡丹江二模 难度★★★)
已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ=24,则OM的长为 .
26.(2014 绍兴 难度★★★)
把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为 .
27.(2015 永州 难度★★★)
如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为 .
28.(2015 贺州 难度★★★)
如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是 (结果保留π).
29.(2014 苏州 难度★★★★)
如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是 .
30.(2015 宁夏 难度★)
如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.
31.(2015 南开区一模 难度★)
已知,AB为⊙O的直径,C为⊙O上一点,若直线CD与⊙O相切于点C,AD⊥CD,垂足为D.
(1)如图①,AB=10,AD=2,求AC的长;
(2)如果把直线CD向下平行移动,如图(2),直线CD交⊙O于C,G两点,若题目中的其他条件不变,且AG=4,BG=3,求的值.
32.(2014秋 安庆期末 难度★★)
已知:如图,CA=CB=CD,过三点A,C,D的⊙O交AB于点F.
求证:CF平分∠BCD.
33.(2014 南通 难度★★★)
如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.
(1)若CD=16,BE=4,求⊙O的直径;
(2)若∠M=∠D,求∠D的度数.
34.(2014 汕头 难度★★★)
如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.
(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)
(2)求证:OD=OE;
(3)求证:PF是⊙O的切线.
35.(2014 丹徒区二模 难度★★★)
如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.
(1)求证:MN是半圆的切线;
(2)求证:FD=FG.
(3)若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.
36.(2015 滨州 难度★★★)
如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.
(1)求的长.
(2)求弦BD的长.
37.(2014 潍坊 难度★★★)
如图,在梯形ABCD中,AD∥BC,∠B=90°,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.
(1)求证:OD∥BE;
(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.
38.(2014 扬州 难度★★★)
如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.
(1)求证:DE∥BC;
(2)若AF=CE,求线段BC的长度.
39.(2015 济南校级二模 难度★★★)
如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,求图中阴影部分的面积.(结果保留π)
40.(2015 崇安区二模 难度★★★)
如图,点A、B、C在⊙O上,且四边形OABC是一平行四边形.
(1)求∠AOC的度数;
(2)若⊙O的半径为3,求图中阴影部分的面积.
41.(2015 柳州 难度★★★)
如图,已知四边形ABCD是平行四边形,AD与△ABC的外接圆⊙O恰好相切于点A,边CD与⊙O相交于点E,连接AE,BE.
(1)求证:AB=AC;
(2)若过点A作AH⊥BE于H,求证:BH=CE+EH.
42.(2015 呼伦贝尔 难度★★★)
如图,已知直线l与⊙O相离.OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)求证:AB=AC;
(2)若PC=2,求⊙O的半径.
43.(2015 铁岭 难度★★★)
如图,在△ABC中,AB=AC,AD是BC边上的中线,以AD为直径作⊙O,连接BO并延长至E,使得OE=OB,连接AE.
(1)求证:AE是⊙O的切线;
(2)若BD=AD=4,求阴影部分的面积.
44.(2015 杭州模拟 难度★★★)
如图,⊙O是△ABC的外接圆,C是优弧AB上一点,设∠OAB=α,∠C=β.
(1)当β=36°时,求α的度数;
(2)猜想α与β之间的关系,并给予证明.
(3)若点C平分优弧AB,且BC2=3OA2,试求α的度数.
45.(2015 松江区二模 难度★★★)
如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.
(1)若BE=8,求⊙O的半径;
(2)若∠DMB=∠D,求线段OE的长.
46.(2014秋 龙江县校级月考 难度★★★)
如图,△ABC中,AC=AB,以AB为直径作半圆O,交AC于点E,交BC于点D.
(1)如图1,求证:CD=BD;
(2)如图2,连接CO交半圆O于点F,若AB=10,AE=8,求CF的长.
47.(2015 周村区一模 难度★★★)
如图,∠AOB=90°,C、D是的三等分点,AB分别交OC、OD于点E、F,求证:AE=CD.
48.(2014 厦门 难度★★★★)
已知A,B,C,D是⊙O上的四个点.
(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;
(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.
49.(2014 呼和浩特 难度★★★★)
如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.
(1)求证:∠ACM=∠ABC;
(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.
50.(2015 黄陂区校级模拟 难度★★★★)
如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,交连接AC、FC.
(1)求证:∠ACF=∠ADB;
(2)若点A到BD的距离为m,BF+CF=n,求线段CD的长;
(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.
51.(2015 海宁市模拟 难度★★★★★)
如图,四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合).
(1)若点A在优弧上,且圆心O在∠BAD的内部,已知∠BOD=120°,则∠OBA+∠ODA= °.
(2)若四边形OBCD为平行四边形.
①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;
②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.
52.(2015 杭州模拟 难度★★★★★)
已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.
(1)∠E的度数为 ;
(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;
(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.
答案
练习1
1. D 2. A 3. 4. 48 5.
练习2
1. D 2. 112.5
3.解:(1)连接OC,
∵直线l与⊙O相切于点C,
∴OC⊥CD;
又∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO;
又∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB;
(2)如图②,连接BF,
∵AB是⊙O的直径,
∴∠AFB=90°,
∴∠BAF=90°﹣∠B,
∴∠AEF=∠ADE+∠DAE,
在⊙O中,四边形ABFE是圆的内接四边形,
∴∠AEF+∠B=180°,
∴∠BAF=∠DAE.
4.(1)证明:如图1,连接OD,
∵AB=AC,
∴∠C=∠ABC,
∵OD=OB,
∴∠ABC=∠ODB,
∴∠ODB=∠C,
∴OD∥AC,
∴∠ODG=∠DGC,
∵DG⊥AC,
∴∠DGC=90°,
∴∠ODG=90°,
∴OD⊥FG,
∵OD是⊙O的半径,
∴直线FG是⊙O的切线.
(2)解:如图2,
∵AB=AC=10,AB是⊙O的直径,
∴OA=OD=10÷2=5,
由(1),可得
OD⊥FG,OD∥AC,
∴∠ODF=90°,∠DOF=∠A,
在△ODF和△AGF中,
∴△ODF∽△AGF,
∴,
∵cosA=,
∴cos∠DOF=,
∴=,
∴AF=AO+OF=5,
∴,
解得AG=7,
∴CG=AC﹣AG=10﹣7=3,
即CG的长是3.
5.(1)证明:连接OE,
∵AB=BC且D是AC中点,
∴BD⊥AC,
∵BE平分∠ABD,
∴∠ABE=∠DBE,
∵OB=OE
∴∠OBE=∠OEB,
∴∠OEB=∠DBE,
∴OE∥BD,
∵BD⊥AC,
∴OE⊥AC,
∵OE为⊙O半径,
∴AC与⊙O相切.
(2)解:∵BD=6,sinC=,BD⊥AC,
∴BC=10,
∴AB=BC=10,
设⊙O 的半径为r,则AO=10﹣r,
∵AB=BC,
∴∠C=∠A,
∴sinA=sinC=,
∵AC与⊙O相切于点E,
∴OE⊥AC,
∴sinA===,
∴r=,
答:⊙O的半径是.
练习3
1. B 2. A 3. 4. 5.
练习4
1. B 2. 45 3. 18 4. 5.
实战演练
1-5 BCDBA 6-10 ABDCD 11-15 DDDCB 16. 或 17. 28 18. 19. 20. 4 21. 8 22. 外离 23. 24. 25.
26. 5 27. 28. 29. 2
30.(1)证明:连接OB,如图所示:
∵AC是⊙O的直径,
∴∠ABC=90°,
∴∠C+∠BAC=90°,
∵OA=OB,
∴∠BAC=∠OBA,
∵∠PBA=∠C,
∴∠PBA+∠OBA=90°,
即PB⊥OB,
∴PB是⊙O的切线;
(2)解:∵⊙O的半径为2,
∴OB=2,AC=4,
∵OP∥BC,
∴∠C=∠BOP,
又∵∠ABC=∠PBO=90°,
∴△ABC∽△PBO,
∴,
即,
∴BC=2.
31.解:(1)∵AB为⊙O的直径,
∴∠ACB=90°,
∵直线CD与⊙O相切于点C,
∴∠ACD=∠B,
又∵AD⊥CD,
∴∠CDA=90°=∠ACB,
∴△ACD∽△ABC,
∴,
∴AC2=AB•AD=10×2=20,
∴AC=2;
(2)∵AB为⊙O的直径,
∴∠AGB=90°,
∴AB==5,
∵AD⊥CD,
∴∠CDA=90°=∠AGB,
又∵∠ACD=∠B,
∴△ACD∽△ABC,
∴.
32.证明:连接AD,
∵CA=CD,
∴∠D=∠CAD.
∵∠D=∠CFA,
∴∠CAD=∠CFA.
∵∠CFA=∠B+∠FCB,
∴∠CAF+∠FAD=∠B+∠FCB.
∵CA=CB,
∴∠CAF=∠B,
∴∠FAD=∠FCB,
∵∠FAD=∠FCD,
∴∠FCB=∠FCD,
∴CF平分∠BCD.
33. 解:(1)∵AB⊥CD,CD=16,
∴CE=DE=8,
设OB=x,
又∵BE=4,
∴x2=(x﹣4)2+82,
解得:x=10,
∴⊙O的直径是20.
(2)∵∠M=∠BOD,∠M=∠D,
∴∠D=∠BOD,
∵AB⊥CD,
∴∠D=30°.
34.(1)解:∵AC=12,
∴CO=6,
∴==2π;
答:劣弧PC的长为:2π.
(2)证明:∵PE⊥AC,OD⊥AB,
∠PEA=90°,∠ADO=90°
在△ADO和△PEO中,
,
∴△POE≌△AOD(AAS),
∴OD=EO;
(3)证明:如图,连接AP,PC,
∵OA=OP,
∴∠OAP=∠OPA,
由(2)得OD=EO,
∴∠ODE=∠OED,
又∵∠AOP=∠EOD,
∴∠OPA=∠ODE,
∴AP∥DF,
∵AC是直径,
∴∠APC=90°,
∴∠PQE=90°
∴PC⊥EF,
又∵DP∥BF,
∴∠ODE=∠EFC,
∵∠OED=∠CEF,
∴∠CEF=∠EFC,
∴CE=CF,
∴PC为EF的中垂线,
∴∠EPQ=∠QPF,
∵△CEP∽△CAP
∴∠EPQ=∠EAP,
∴∠QPF=∠EAP,
∴∠QPF=∠OPA,
∵∠OPA+∠OPC=90°,
∴∠QPF+∠OPC=90°,
∴OP⊥PF,
∴PF是⊙O的切线.
35.解:(1)如右图所示,
∵AB是直径,
∴∠ACB=90°,
∴∠CAB+∠ABC=90°,
∵∠MAC=∠ABC,
∴∠CAB+∠MAC=90°,
即∠MAB=90°,
∴MN是半圆的切线.
(2)证明:∵DE⊥AB,
∴∠EDB+∠ABD=90°,
∵AB是直径,
∴∠ACB=90°,
∴∠CBG+∠BGC=90°
∵D是弧AC的中点,
∴∠CBD=∠ABD,
∴∠EDB=∠BGC,
∵∠DGF=∠BGC,
∴∠EDB=∠DGF,
∴DF=FG.
(3)如图,连接AD、OD,
∵DF=FG,
∴∠DGF=∠FDG,
∵∠DGF+∠DAG=90°,∠FDG+∠ADF=90°,
∴∠DAF=∠ADF,
∴AF=DF=GF,
∴S△ADG=2S△DGF=9,
∵△BCG∽△ADG,
∴=,
∵△ADG的面积为9,且DG=3,GC=4,
∴S△BCG=16.
答:△BCG的面积是16.
36.解:(1)如图,连接OC,OD,,
∵AB是⊙O的直径,
∴∠ACB=∠ADB=90°,
在Rt△ABC中,
∵,
∴∠BAC=60°,
∴∠BOC=2∠BAC=2×60°=120°,
∴的长=.
(2)∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴∠AOD=∠BOD,
∴AD=BD,
∴∠ABD=∠BAD=45°,
在Rt△ABD中,
BD=AB×sin45°=10×.
37.(1)证明:如图,连接OE,
∵CD是⊙O的切线,
∴OE⊥CD,
在Rt△OAD和Rt△OED,
,
∴Rt△OAD≌Rt△OED(HL)
∴∠AOD=∠EOD=∠AOE,
在⊙O中,∠ABE=∠AOE,
∴∠AOD=∠ABE,
∴OD∥BE(同位角相等,两直线平行).
(2)解:与(1)同理可证:Rt△COE≌Rt△COB,
∴∠COE=∠COB=∠BOE,
∵∠DOE+∠COE=90°,
∴△COD是直角三角形,
∵S△DEO=S△DAO,S△OCE=S△COB,
∴S梯形ABCD=2(S△DOE+S△COE)=2S△COD=OC•OD=48,
即xy=48,
又∵x+y=14,
∴x2+y2=(x+y)2﹣2xy=142﹣2×48=100,
在Rt△COD中,
CD====10,
∴CD=10.
38.解:(1)证明:连接OD、OE,
∵AD是⊙O的切线,
∴OD⊥AB,∴∠ODA=90°,
又∵弧DE的长度为4π,
∴,
∴n=60,
∴△ODE是等边三角形,
∴∠ODE=60°,∴∠EDA=30°,
∴∠B=∠EDA,
∴DE∥BC.
(2)连接FD,
∵DE∥BC,
∴∠DEF=∠C=90°,
∴FD是⊙0的直径,
由(1)得:∠EFD=∠EOD=30°,FD=24,
∴EF=,
又∵∠EDA=30°,DE=12,
∴AE=,
又∵AF=CE,∴AE=CF,
∴CA=AE+EF+CF=20,
又∵,
∴BC=60.
39.解:连接OC,
∵AB与圆O相切,
∴OC⊥AB,
∵OA=OB,
∴∠AOC=∠BOC,∠A=∠B=30°,
在Rt△AOC中,∠A=30°,OA=4,
∴OC=OA=2,∠AOC=60°,
∴∠AOB=120°,AC==2,即AB=2AC=4,
则S阴影=S△AOB﹣S扇形=×4×2﹣=4﹣.
故图中阴影部分的面积为4﹣.
40.解:(1)如图,连结OB,
∵四边形OABC是一平行四边形,
∴AB=OC,
∵OA=OB=OC,
∴AB=OA=OB,即△OAB是等边三角形,
∴∠AOB=60°,同理∠BOC=60°,
∴∠AOC=120°;
(2)S阴影=扇形OAB的面积﹣三角形OAB的面积
=π×32﹣×32
=.
41.证明:(1)∵AD与△ABC的外接圆⊙O恰好相切于点A,
∴∠ABE=∠DAE,又∠EAC=∠EBC,
∴∠DAC=∠ABC,
∵AD∥BC,
∴∠DAC=∠ACB,
∴∠ABC=∠ACB,
∴AB=AC;
(2)作AF⊥CD于F,
∵四边形ABCE是圆内接四边形,
∴∠ABC=∠AEF,又∠ABC=∠ACB,
∴∠AEF=∠ACB,又∠AEB=∠ACB,
∴∠AEH=∠AEF,
在△AEH和△AEF中,
,
∴△AEH≌△AEF,
∴EH=EF,
∴CE+EH=CF,
在△ABH和△ACF中,
,
∴△ABH≌△ACF,
∴BH=CF=CE+EH.
42.证明:(1)如图1,连接OB.
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;
(2)如图2,延长AP交⊙O于D,连接BD,
设圆半径为r,则OP=OB=r,PA=5﹣r,
则AB2=OA2﹣OB2=52﹣r2,
AC2=PC2﹣PA2=(2)2﹣(5﹣r)2,
∴52﹣r2=(2)2﹣(5﹣r)2,
解得:r=3,
∴AB=AC=4,
∵PD是直径,
∴∠PBD=90°=∠PAC,
又∵∠DPB=∠CPA,
∴△DPB∽△CPA,
∴=,
∴=,
解得:PB=.
∴⊙O的半径为3,线段PB的长为.
43.解:(1)∵AB=AC,AD是BC边上的中线,
∴∠ODB=90°,
在△BOD和△EOA中,
,
∴△BOD≌△EOA,
∴∠OAE=∠ODB=90°,
∴AE是⊙O的切线;
(2)∵∠ODB=90°,BD=OD,
∴∠BOD=45°,∴∠AOE=45°,
则阴影部分的面积=×4×4﹣=8﹣.
44.解:(1)连接OB,则OA=OB,
∴∠OAB=∠OBA,
∵∠C=36°,
∴∠AOB=72°,
∵∠OAB=(180°﹣∠AOB)=54°,
即β=54°.
(2)α与β之间的关系是α+β=90°;
证明:∵∠OBA=∠OAB=α,
∴∠AOB=180°﹣2α,
∵∠AOB=2∠β,
∴180°﹣2α=2∠β,
∴α+β=90°.
(3)∵点C平分优弧AB
∴AC=BC
又∵BC2=3OA2,
∴AC=BC=OA,
过O作OE⊥AC于E,连接OC,
由垂径定理可知AE=OA,
∴∠AOE=60°,∠OAE=30°,
∴∠ABC=60°,
∴△ABC为正三角形,
则α=∠CAB﹣∠CAO=30°.
45.解:(1)设⊙O的半径为x,则OE=x﹣8,
∵CD=24,由垂径定理得,DE=12,
在Rt△ODE中,OD2=DE2+OE2,
x2=(x﹣8)2+122,
解得:x=13.
(2)∵OM=OB,
∴∠M=∠B,
∴∠DOE=2∠M,
又∠M=∠D,
∴∠D=30°,
在Rt△OED中,∵DE=12,∠D=30°,
∴OE=4.
46.(1)证明:连接AD,
∵AB为直径,
∴∠ADB=90°,
∵AB=AC,
∴CD=BD;
(2)解:延长CD交⊙O于点F,
根据切割线定理,
CE•CA=CF•CH,
2×10=CF•(CF+10)
解得:CF=3﹣5,CF=﹣3﹣5(舍去)
47.证明:连接AC,
∵∠AOB=90°,C、D是的三等分点,
∴∠AOC=∠COD=30°,
∴AC=CD,又OA=OC,
∴∠ACE=75°,
∵∠AOB=90°,OA=OB,
∴∠OAB=45°,
∠AEC=∠AOC+∠OAB=75°,
∴∠ACE=∠AEC,
∴AE=AC,
∴AE=CD.
48.解:(1)∵∠ADC=∠BCD=90°,
∴AC、BD是⊙O的直径,
∴∠DAB=∠ABC=90°,
∴四边形ABCD是矩形,
∵AD=CD,
∴四边形ABCD是正方形,
∴AC⊥BD;
(2)连结DO,延长交圆O于F,连结CF、BF.
∵DF是直径,
∴∠DCF=∠DBF=90°,
∴FB⊥DB,
又∵AC⊥BD,
∴BF∥AC,∠BDC+∠ACD=90°,
∵∠FCA+∠ACD=90°
∴∠BDC=∠FCA=∠BAC
∴等腰梯形ACFB
∴CF=AB.
根据勾股定理,得
CF2+DC2=AB2+DC2=DF2=20,
∴DF=,
∴OD=,即⊙O的半径为.
49.(1)证明:如图,连接OC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠ABC+∠BAC=90°,
又∵CM是⊙O的切线,
∴OC⊥CM,
∴∠ACM+∠ACO=90°,
∵CO=AO,
∴∠BAC=∠ACO,
∴∠ACM=∠ABC;
(2)解:∵BC=CD,∠ACB=90°,
∴∠OAC=∠CAD,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠OCA=∠CAD,
∴OC∥AD,
又∵OC⊥CE,
∴AD⊥CE,
∴△AEC是直角三角形,
∴△AEC的外接圆的直径是AC,
又∵∠ABC+∠BAC=90°,∠ACM+∠ECD=90°,
∴△ABC∽△CDE,
∴=,
⊙O的半径为3,
∴AB=6,
∴=,
∴BC2=12,
∴BC=2,
∴AC==2,
∴△AEC的外接圆的半径为.
50.(1)证明:连接AB,
∵OP⊥BC,
∴BO=CO,
∴AB=AC,
又∵AC=AD,
∴AB=AD,
∴∠ABD=∠ADB,
又∵∠ABD=∠ACF,
∴∠ACF=∠ADB.
(2)解:过点A作AM⊥CF交CF的延长线于M,过点A作AN⊥BF于N,连接AF,
则AN=m,
∴∠ANB=∠AMC=90°,
在△ABN和△ACM中
,
∴Rt△ABN≌Rt△ACM(AAS)
∴BN=CM,AN=AM,
又∵∠ANF=∠AMF=90°,
在Rt△AFN和Rt△AFM中
,
∴Rt△AFN≌Rt△AFM(HL),
∴NF=MF,
∴BF+CF=BN+NF+CM﹣MF,
=BN+CM=2BN=n,
∴BN=,
∴在Rt△ABN中,AB2=BN2+AN2=m2+=m2+,
在Rt△ACD中,CD2=AB2+AC2=2AB2=2m2+,
∴CD=.
(3)解:的值不发生变化,
过点D作DH⊥AO于H,过点D作DQ⊥BC于Q,
∵∠DAH+∠OAC=90°,∠DAH+∠ADH=90°,
∴∠OAC=∠ADH,
在△DHA和△AOC中
,
∴Rt△DHA≌Rt△AOC(AAS),
∴DH=AO,AH=OC,
又∵BO=OC,
∴HO=AH+AO=OB+DH,
而DH=OQ,HO=DQ,
∴DQ=OB+OQ=BQ,
∴∠DBQ=45°,
又∵DH∥BC,
∴∠HDE=45°,
∴△DHE为等腰直角三角形,
∴=,
∴=.
51.解:(1)如图1,连接BD,,
∵∠BOD=120°,
∴∠BAD=120°÷2=60°,
∴∠0BD+∠ODB=180°﹣∠BOD=180°﹣120°=60°,
∴∠OBA+∠ODA=180°﹣(∠0BD+∠ODB)﹣∠BAD
=180°﹣60°﹣60°
=120°﹣60°
=60°
(2)①如图2,
∵四边形OBCD为平行四边形,
∴∠BOD=∠BCD,∠OBC=∠ODC,
又∵∠BAD+∠BCD=180°,,
∴,
∴∠B0D=120°,∠BAD=120°÷2=60°,
∴∠OBC=∠ODC=180°﹣120°=60°,
又∵∠ABC+∠ADC=180°,
∴∠OBA+∠ODA=180°﹣(∠OBC+∠ODC)
=180°﹣(60°+60°)
=180°﹣120°
=60°
②如图3,
∵四边形OBCD为平行四边形,
∴∠BOD=∠BCD,∠OBC=∠ODC,
又∵∠BAD+∠BCD=180°,,
∴,
∴∠B0D=120°,∠BAD=120°÷2=60°,
∴∠OAB=∠OAD+∠BAD=∠OAD+60°,
∵OA=OD,OA=OB,
∴∠OAD=∠ODA,∠OAB=∠OBA,
∴∠OBA=∠ODA+60°.
故答案为:60.
52.解:(1)如图1,连结OD,OC,BD,
∵OD=OC=CD=2
∴△DOC为等边三角形,
∴∠DOC=60°
∴∠DBC=30°
∴∠EBD=30°
∵AB为直径,
∴∠ADB=90°
∴∠E=90°﹣300=600
∠E的度数为600;
(2)①如图2,直线AD,CB交于点E,连结OD,OC,AC.
∵OD=OC=CD=2,
∴△DOC为等边三角形,
∴∠DOC=60°,
∴∠DAC=30°,
∴∠EBD=30°,
∵AB为直径,
∴∠ACB=90°,
∴∠E=90°﹣30°=60°,
(3)如图3,连结OD,OC,
∵OD=OC=CD=2,
∴△DOC为等边三角形,
∴∠DOC=60°,
∴∠CBD=30°,
∴∠ADB=90°,
∴∠BED=60°,
∴∠AEC=60°.