- 808.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
开放探究题
开放探究问题最常见的是命题中缺少一定的条件或无明确的结论,要求添加条件或概括结论;其次是给定条件,判断存在与否的问题;近几年来又逐步出现了一些根据提供的材料,按自己的喜好自编问题并加以解决的试题。
开放探究问题涉及知识面广,遍布整个初中阶段的所有知识,要求学生具有较强的解题能力和思维能力。
开放探究问题就开放而言,有条件开放、结论开放、解题方法开放、编制问题开放:就探究而言,可归纳为探究条件型、探究结论型、探究结论存在与否型及归纳探究型四种。
类型一:探究条件型
探究条件型是根据问题提供的残缺条件添补若干条件,使结论成立,解决此类问题的一般方法是:根据结论成立所需要的条件增补条件,此时要注意已有的条件及由已有的条件推导出的条件,不可重复条件,也不能遗漏条件。
例1.(2009丽水市)已知命题:如图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.
解:是假命题.
以下任一方法均可:
①添加条件:AC=DF.
证明:∵AD=BE,
∴AD+BD=BE+BD,即AB=DE.
在△ABC和△DEF中,
AB=DE,
∠A=∠FDE,
AC=DF,
∴△ABC≌△DEF(SAS).
②添加条件:∠CBA=∠E.
证明:∵AD=BE,
∴AD+BD=BE+BD,即AB=DE.
在△ABC和△DEF中,
∠A=∠FDE,
AB=DE,
∠CBA=∠E ,
∴△ABC≌△DEF(ASA).
③添加条件:∠C=∠F.
证明:∵AD=BE,
∴AD+BD=BE+BD,即AB=DE.
在△ABC和△DEF中,
∠A=∠FDE,
∠C=∠F ,
AB=DE,
∴△ABC≌△DEF(AAS)
同步测试
A
B
C
E
D
F
1.(2009年牡丹江市)如图,□ABCD中,、分别为、边上的点,要使需添加一个条件: .
1.
2.(2009东营)如图,在四边形ABCD中,已知AB与CD不平行,∠ABD=∠ACD,请你添加一个条件: ,使得加上这个条件后能够推出AD∥BC且AB=CD.
B
C
D
A
O
2.∠DAC=∠ADB,∠BAD=∠CDA,∠DBC=∠ACB,∠ABC=∠DCB,OB=OC,OA=OD;(任选其一)
类型二:探究结论型
探究结论型问题是指根据题目所给的条件经过分析、推断,得出一个与条件相关的结论,解决此类问题的关键是需要对已知的条件进行综合推理,得出新的结论。
例2.(2009年安徽)如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,
且DM交AC于F,ME交BC于G.
(1)写出图中三对相似三角形,并证明其中的一对;
(2)连结FG,如果α=45°,AB=,AF=3,求FG的长.
【答案】
(1)证:△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM
以下证明△AMF∽△BGM.
∵∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B
∴△AMF∽△BGM.
(2)解:当α=45°时,可得AC⊥BC且AC=BC
∵M为AB的中点,∴AM=BM=
又∵AMF∽△BGM,∴
∴
又,∴,
∴
同步测试
3.(2009年福州)请写出一个比小的整数
3.答案不唯一,小于或等于2的整数均可,如:2,1等
4.(2009年莆田)已知,如图,是以线段为直径的的切线,交于点,过点作弦垂足为点,连接.
(1)仔细观察图形并写出四个不同的正确结论:①________,②________ ,③________,④____________(不添加其它字母和辅助线,不必证明);
C
D
O
F
A
B
E
(2)=,=,求的半径
4.(1)
等
C
D
O
F
A
B
E
(2)解:是的直径
又
又是的切线
在中,
类型三:探究结论存在与否型
探究结论存在与否型问题的解法一般先假定存在,然后以此为条件及现有的条件进行推理,然后得出问题的解或矛盾再加以说明。
例3.(2009仙桃)如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D 出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形?
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形?
解:(1)在直角梯形ABCD中,
∵QN⊥AD,∠ABC=90°,∴四边形ABNQ是矩形。
∵QD=t,AD=3,∴BN=AQ=3-t,∴NC=BC-BN=4-(3- t)= t+1。
∵AB=3,BC=4,∠ABC=90°,∴AC=5。
∵QN⊥AD,∠ABC=90°,∴MN∥AB,∴,
即,∴.
(2)当QD=CP时,四边形PCDQ构成平行四边形。
∴当t=4-t,即t=2时,四边形PCDQ构成平行四边形。
(3)∵MN∥AB,
∴△MNC∽△ABC,要使射线QN将△ABC的面积平分,则△MNC与△ABC的面积比为1:2,即相似比为1:,∴,即,∴t=.∴CN=,MC=,∴CN+MC=,∵△ABC的周长的一半==6≠,∴
不存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分。
(4)分3种情况:
①如图,当PM=MC时,△PMC为等腰三角形。
则PN=NC,即3-t-t=t+1,
∴,即时,△PMC为等腰三角形。
②如图,当CM=PC时,△PMC为等腰三角形。
即,
∴时,△PMC为等腰三角形。
③如图,当PM=PC时,△PMC为等腰三角形。
∵PC=4-t,NC=t+1,
∴PN=2t-3,
又∵,
∴MN=,
由勾股定理可得[]2+(2t-3)2=(4-t)2,
即当t=时,△PMC为等腰三角形。
同步测试
5.(2009年广西南宁·改编)如图,在边长为5的正方形中,点、分别是、边上的点,且,延长交正方形外角平分线,边上是否存在一点,使得四边形是平行四边形?若存在,请给予证明;若不存在,请说明理由.
解法①
四边形ABCD为正方形
F
A
D
C
B
E
1
3
2
四边形是平行四边形.
解法:在边上存在一点,使四边形是平行四边形
证明:在边上取一点,使,连接、、.
B
C
E
D
A
F
P
5
4
1
M
四边形为平行四边形
6.(2009白银市)如图(1),抛物线与x轴交于A、B两点,与y轴交于点
C(0,).[图(2)、图(3)为解答备用图]
(1) ,点A的坐标为 ,点B的坐标为 ;
(2)设抛物线的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)在抛物线上求点Q,使△BCQ是以BC为直角边的直角三角形.
图(1) 图(2) 图(3)
解:(1),
A(-1,0),
B(3,0).
(2)如图(1),抛物线的顶点为M(1,-4),连结OM.
则 △AOC的面积=,△MOC的面积=,
△MOB的面积=6,
∴ 四边形 ABMC的面积
=△AOC的面积+△MOC的面积+△MOB的面积=9.
(3)如图(2),设D(m,),连结OD.
则 0<m<3, <0.
且 △AOC的面积=,△DOC的面积=,
△DOB的面积=-(),
∴ 四边形 ABDC的面积=△AOC的面积+△DOC的面积+△DOB的面积
=
=.
图(3) 图(4)
∴ 存在点D,使四边形ABDC的面积最大为.
(4)有两种情况:
如图(3),过点B作BQ1⊥BC,交抛物线于点Q1、交y轴于点E,连接Q1C.
∵ ∠CBO=45°,∴∠EBO=45°,BO=OE=3.
∴ 点E的坐标为(0,3).
∴ 直线BE的解析式为.
由 解得
∴ 点Q1的坐标为(-2,5).
如图(4),过点C作CF⊥CB,交抛物线于点Q2、交x轴于点F,连接BQ2.
∵ ∠CBO=45°,∴∠CFB=45°,OF=OC=3.
∴ 点F的坐标为(-3,0).
∴ 直线CF的解析式为.
由 解得
∴点Q2的坐标为(1,-4).
综上,在抛物线上存在点Q1(-2,5)、Q2(1,-4),使△BCQ1、△BCQ2是以BC为直角边的直角三角形.
类型四:归纳探究型
归纳探究型问题是指给定一些条件和结论,通过归纳、总结、概括,由特殊猜测一般的结论或规律,解决这类问题的一般方法是由特殊性得到的结论进行合理猜想,适量验证。
例4.(2009年抚顺市)已知:如图所示,直线与的平分线交于点,过点作一条直线与两条直线分别相交于点.
(1)如图1所示,当直线与直线垂直时,猜想线段之间的数量关系,请直接写出结论,不用证明;
(2)如图2所示,当直线与直线不垂直且交点都在的同侧时,(1)中的结论是否成立?如果成立,请证明:如果不成立,请说明理由;
(3)当直线与直线不垂直且交点在的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段
之间还存在某种数量关系吗?如果存在,请直接写出它们之间的数量关系.
A
B
E
D
C
M
N
l
A
B
E
D
C
M
N
l
A
B
C
M
N
A
B
C
M
N
图1
图2
备用图
备用图
解:(1)
(2)成立.
(方法一):在上截取,连接.
即
A
B
E
D
C
M
N
l
1
2
5
6
3
4
H
F
G
题(2)方法二图
(方法二):过点作直线,垂足为点,
交于点.作,垂足为点.
由(1)得
(方法三):延长,交于点.
(3)不成立.
存在.当点在射线上、点在射线的反向延长线上时(如图),
当点在射线的反向延长线上,点在射线上时(如图),
A
B
E
D
C
M
N
l
1
2
5
6
3
4
F
7
A
B
E
D
C
M
l
A
B
E
C
M
D
l
N
题(2)方法三图
题(3)图①
题(3)图②
同步测试
7.(2009仙桃)如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:
(1)若AB=AC,请探究下列数量关系:
①在图②中,BD与CE的数量关系是________________;
②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;
(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.
7.(1)①BD=CE;
②AM=AN,∠MAN=∠BAC 理由如下:
∵在图①中,DE//BC,AB=AC
∴AD=AE.
在△ABD与△ACE中∴△ABD≌△ACE.∴BD=CE,∠ACE=∠ABD.在△DAM与△EAN中,
∵DM=BD,EN=CE,BD=CE,∴DM=EN,∵∠AEN=∠ACE+∠CAE,∠ADM=∠ABD+∠BAD,∴∠AEN=∠ADM.
又∵AE=AD,∴△ADM≌△AEN.∴AM=AN,∠DAM=∠EAN.∴∠MAN=∠DAE=∠BAC.∴AM=AN,∠MAN=∠BAC.
(2)AM=kAN,∠MAN=∠BAC.
随堂检测:
1. (2009年台州市)请你写出一个图象在第一、三象限的反比例函数.
答: .
2. (2009白银市)如图6,四边形ABCD是平行四边形,使它为矩形的条件可以是 .
3. (2009年牡丹江)先化简:并任选一个你喜欢的数代入求值.
4. (09湖南邵阳)已知,用“+”或“”连接,有三种不同的形式:,请你任选其中一种进行计算,并化简求值,其中∶=5∶2.
5. (09湖南邵阳)如图是一个反比例函数图象的一部分,点,是它的两个端点.
(1)求此函数的解析式,并写出自变量的取值范围;
(2)请你举出一个能用本题的函数关系描述的生活实例.
6. (2009年杭州市)如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P.
D
E
F
P
B
A
C
(1)求证:AF=BE;
(2)请你猜测∠BPF的度数,并证明你的结论.
7. (2009年遂宁)如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6.
⑴求二次函数的解析式;
⑵该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.
随堂检测答案:
1.(答案不唯一)
2.答案不唯一,如AC=BD,∠BAD=90o,等
3.原式===.
选择a除了0与1以外的数代入均可。
4.选择一:,
当∶=5∶2时,,原式=.
选择二:,
当∶=5∶2时,,原式=.
选择三:,
当∶=5∶2时,,原式=.
注:只写一种即可.
5.(1)设,在图象上,,即,,其中;
(2)答案不唯一.如:小明家离学校,每天以的速度去上学,那么小明从家去学校所需的时间.
6.(1)∵BA=AD,∠BAE=∠ADF,AE=DF,
∴△BAE≌△ADF,∴BE=AF;
(2)猜想∠BPF=120° .
∵由(1)知△BAE≌△ADF,∴∠ABE=∠DAF .
∴∠BPF=∠ABE+∠BAP=∠BAE,而AD∥BC,∠C=∠ABC=60°,
∴∠BPF=120° .
7.解:⑴设二次函数的解析式为:y=a(x-h)2+k,∵顶点C的横坐标为4,且过点(0,)
∴y=a(x-4)2+k ………………①
又∵对称轴为直线x=4,图象在x轴上截得的线段长为6,∴A(1,0),B(7,0)
∴0=9a+k ………………②,由①②解得a=,k=,∴二次函数的解析式为:y=(x-4)2-
⑵∵点A、B关于直线x=4对称,∴PA=PB,∴PA+PD=PB+PD≥DB,∴当点P在线段DB上时PA+PD取得最小值,∴DB与对称轴的交点即为所求点P,设直线x=4与x轴交于点M,∵PM∥OD,∴∠BPM=∠BDO,又∠PBM=∠DBO,∴△BPM∽△BDO,∴, ∴,∴点P的坐标为(4,)
⑶由⑴知点C(4,),又∵AM=3,∴在Rt△AMC中,cot∠ACM=,∴∠ACM=60o,∵AC=BC,∴∠ACB=120o
①当点Q在x轴上方时,过Q作QN⊥x轴于N,如果AB=BQ,由△ABC∽△ABQ有BQ=6,∠ABQ=120o,则∠QBN=60o,∴QN=3,BN=3,ON=10,此时点Q(10,),如果AB=AQ,由对称性知Q(-2,)
②当点Q在x轴下方时,△QAB就是△ACB,此时点Q的坐标是(4,),经检验,点(10,)与(-2,)都在抛物线上,综上所述,存在这样的点Q,使△QAB∽△ABC,点Q的坐标为(10,)或(-2,)或(4,).