- 468.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2012年全国各地中考数学压轴题汇编三
【2012上海】
21、如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.
(1)求这个二次函数的解析式;
(2)求线段EF、OF的长(用含t的代数式表示);
(3)当∠ECA=∠OAC时,求t的值.
【2012广东】
22.如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.
(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).
(21世版
【2012嘉兴】
23、在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.
(1)如图1,当m=时,
①求线段OP的长和tan∠POM的值;
②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;
(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.
①用含m的代数式表示点Q的坐标;
②求证:四边形ODME是矩形.
【 2012贵州安顺】
24、如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.
(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
【2012•资阳】
25.抛物线的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.
(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;
(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;
(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.
【2012•德州】
26、如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
【2012•湘潭】
27、如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
(1)求抛物线的解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.
【2012•济宁】
28、如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.
(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BD•BC;
(3)当△PCD的面积最大时,求点P的坐标.
【 2012•德阳】
29、在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.
(1)求经过点D、B、E的抛物线的解析式;
(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;
(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标.
【 2012无锡】
30、如图1,A.D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示.
(1)求A.B两点的坐标;
(2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式.
答案:
21、解:(1)二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),
∴,解得,
∴这个二次函数的解析式为:y=﹣2x2+6x+8;
(2)∵∠EFD=∠EDA=90°h
∴∠DEF+∠EDF=90°,∠EDF+∠ODA=90°,∴∠DEF=∠ODA
∴△EDF∽△DAO
∴.
∵,
∴=,
∴,∴EF=t.
同理,
∴DF=2,∴OF=t﹣2.
(3)∵抛物线的解析式为:y=﹣2x2+6x+8,
∴C(0,8),OC=8.
如图,连接EC、AC,过A作EC的垂线交CE于G点.
∵∠ECA=∠OAC,∴∠OAC=∠GCA(等角的余角相等);
在△CAG与△OCA中,,
∴△CAG≌△OCA,∴CG=4,AG=OC=8.
如图,过E点作EM⊥x轴于点M,则在Rt△AEM中,
∴EM=OF=t﹣2,AM=OA+AM=OA+EF=4+t,
由勾股定理得:
∵AE2=AM2+EM2=;
在Rt△AEG中,由勾股定理得:
∴EG===
∵在Rt△ECF中,EF=t,CF=OC﹣OF=10﹣t,CE=CG+EG=+4
由勾股定理得:EF2+CF2=CE2,
即,
解得t1=10(不合题意,舍去),t2=6,
∴t=6.
22、解:(1)已知:抛物线y=x2﹣x﹣9;
当x=0时,y=﹣9,则:C(0,﹣9);
当y=0时,x2﹣x﹣9=0,得:x1=﹣3,x2=6,则:A(﹣3,0)、B(6,0);
∴AB=9,OC=9.
(2)∵ED∥BC,
∴△AED∽△ABC,
∴=()2,即:=()2,得:s=m2(0<m<9).
(3)S△AEC=AE•OC=m,S△AED=s=m2;
则:S△EDC=S△AEC﹣S△AED=﹣m2+m=﹣(m﹣)2+;
∴△CDE的最大面积为,此时,AE=m=,BE=AB﹣AE=.
过E作EF⊥BC于F,则Rt△BEF∽Rt△BCO,得:
=,即:=
∴EF=;
∴以E点为圆心,与BC相切的圆的面积 S⊙E=π•EF2=.
23、解:(1)①把x=代入 y=x2,得 y=2,∴P(,2),∴OP=
∵PA丄x轴,∴PA∥MO.∴tan∠P0M=tan∠0PA==.
②设 Q(n,n2),∵tan∠QOB=tan∠POM,
∴.∴n=
∴Q(,),∴OQ=.
当 OQ=OC 时,则C1(0,),C2(0,);
当 OQ=CQ 时,则 C3(0,1).
(2)①∵P(m,m2),设 Q(n,n2),∵△APO∽△BOQ,∴
∴,得n=,∴Q(,).
②设直线PO的解析式为:y=kx+b,把P(m,m2)、Q(,)代入,得:
解得b=1,∴M(0,1)
∵,∠QBO=∠MOA=90°,
∴△QBO∽△MOA
∴∠MAO=∠QOB,
∴QO∥MA
同理可证:EM∥OD
又∵∠EOD=90°,
∴四边形ODME是矩形.
24、解:(1)设抛物线的解析式为y=ax2+bx+c,
由题意知点A(0,﹣12),
所以c=﹣12,
又18a+c=0,
,
∵AB∥OC,且AB=6,
∴抛物线的对称轴是,
∴b=﹣4,
所以抛物线的解析式为;
(2)①,(0<t<6)
②当t=3时,S取最大值为9.
这时点P的坐标(3,﹣12),
点Q坐标(6,﹣6)
若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:
(Ⅰ)当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18),
(Ⅱ)当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.
(Ⅲ)当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.
综上所述,点R坐标为(3,﹣18).
25、解:(1)y=x2+x+m=(x+2)2+(m﹣1)
∴顶点坐标为(﹣2,m﹣1)
∵顶点在直线y=x+3上,
∴﹣2+3=m﹣1,
得m=2;
(2)∵点N在抛物线上,
∴点N的纵坐标为:a2+a+2,
即点N(a,a2+a+2)
过点F作FC⊥NB于点C,
在Rt△FCN中,FC=a+2,NC=NB﹣CB=a2+a,
∴NF2=NC2+FC2=(a2+a)2+(a+2)2,
=(a2+a)2+(a2+4a)+4,
而NB2=(a2+a+2)2,
=(a2+a)2+(a2+4a)+4
∴NF2=NB2,
NF=NB;
(3)连接AF、BF,
由NF=NB,得∠NFB=∠NBF,由(2)的结论知,MF=MA,
∴∠MAF=∠MFA,
∵MA⊥x轴,NB⊥x轴,
∴MA∥NB,∴∠AMF+∠BNF=180°
∵△MAF和△NFB的内角总和为360°,
∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,
∵∠MAB+∠NBA=180°,
∴∠FBA+∠FAB=90°,
又∵∠FAB+∠MAF=90°,
∴∠FBA=∠MAF=∠MFA,
又∵∠FPA=∠BPF,
∴△PFA∽△PBF,
∴=,PF2=PA×PB=,
过点F作FG⊥x轴于点G,在Rt△PFG中,
PG==,
∴PO=PG+GO=,
∴P(﹣,0)
设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,
解得k=,b=,
∴直线PF:y=x+,
解方程x2+x+2=x+,
得x=﹣3或x=2(不合题意,舍去),
当x=﹣3时,y=,
∴M(﹣3,).
26、(1)解:如图1,∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)△PHD的周长不变为定值8.
证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
又∵∠A=∠BQP=90°,BP=BP,
∴△ABP≌△QBP.
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH.
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
∴△EFM≌△BPA.
∴EM=AP=x.
∴在Rt△APE中,(4﹣BE)2+x2=BE2.
解得,.
∴.
又四边形PEFG与四边形BEFC全等,
∴.
即:.
配方得,,
∴当x=2时,S有最小值6.
27、解:(1)将B(4,0)代入抛物线的解析式中,得:
0=16a﹣×4﹣2,即:a=;
∴抛物线的解析式为:y=x2﹣x﹣2.
(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);
∴OA=1,OC=2,OB=4,
即:OC2=OA•OB,又:OC⊥AB,
∴△OAC∽△OCB,得:∠OCA=∠OBC;
∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,
∴△ABC为直角三角形,AB为△ABC外接圆的直径;
所以该外接圆的圆心为AB的中点,且坐标为:(,0).
(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;
设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:
x+b=x2﹣x﹣2,即: x2﹣2x﹣2﹣b=0,且△=0;
∴4﹣4×(﹣2﹣b)=0,即b=4;
∴直线l:y=x﹣4.
由于S△MBC=BC×h,当h最大(即点M到直线BC的距离最远)时,△ABC的面积最大
所以点M即直线l和抛物线的唯一交点,有:
,
解得:
即 M(2,﹣3).
28、解:(1)由题意,得,
解得,
∴抛物线的解析式为y=﹣x﹣4;
(2)设点P运动到点(x,0)时,有BP2=BD•BC,
令x=0时,则y=﹣4,
∴点C的坐标为(0,﹣4).
∵PD∥AC,
∴△BPD∽△BAC,
∴.
∵BC=,
AB=6,BP=x﹣(﹣2)=x+2.
∴BD===.
∵BP2=BD•BC,
∴(x+2)2=,
解得x1=,x2=﹣2(﹣2不合题意,舍去),
∴点P的坐标是(,0),即当点P运动到(,0)时,BP2=BD•BC;
(3)∵△BPD∽△BAC,
∴,
∴×
S△BPC=×(x+2)×4﹣
∵,
∴当x=1时,S△BPC有最大值为3.
即点P的坐标为(1,0)时,△PDC的面积最大.
29、解:(1)∵BE⊥DB交x轴于点E,OABC是正方形,
∴∠DBC=EBA.
在△BCD与△BAE中,
∵,
∴△BCD≌△BAE,∴AE=CD.
∵OABC是正方形,OA=4,D是OC的中点,
∴A(4,0),B(4,4),C(0,4),D(0,2),∴E(6,0).
设过点D(0,2),B(4,4),E(6,0)的抛物线解析式为y=ax2+bx+c,则有:
,
解得,
∴经过点D、B、E的抛物线的解析式为:y=x2+x+2.
(2)结论OF=DG能成立.理由如下:
由题意,当∠DBE绕点B旋转一定的角度后,同理可证得△BCG≌△BAF,∴AF=CG.
∵xM=,∴yM=xM2+xM+2=,∴M(,).
设直线MB的解析式为yMB=kx+b,
∵M(,),B(4,4),
∴,
解得,
∴yMB=x+6,
∴G(0,6),
∴CG=2,DG=4.
∴AF=CG=2,OF=OA﹣AF=2,F(2,0).
∵OF=2,DG=4,
∴结论OF=DG成立.
(3)如图,△PFE为等腰三角形,可能有三种情况,分类讨论如下:
①若PF=FE.
∵FE=4,BC与OA平行线之间距离为4,
∴此时P点位于射线CB上,
∵F(2,0),
∴P(2,4),此时直线FP⊥x轴,
∴xQ=2,
∴yQ=xQ2+xQ+2=,∴Q1(2,);
②若PF=PE.
如图所示,∵AF=AE=2,BA⊥FE,
∴△BEF为等腰三角形,
∴此时点P、Q与点B重合,
∴Q2(4,4);
③若PE=EF.
∵FE=4,BC与OA平行线之间距离为4,
∴此时P点位于射线CB上,
∵E(6,0),∴P(6,4).
设直线yPF的解析式为yPF=kx+b,∵F(2,0),P(6,4),
∴,
解得,
∴yPF=x﹣2.
∵Q点既在直线PF上,也在抛物线上,
∴x2+x+2=x﹣2,化简得5x2﹣14x﹣48=0,
解得x1=,x2=﹣2(不合题意,舍去)
∴xQ=2,
∴yQ=xQ﹣2=﹣2=.
∴Q3(,).
综上所述,Q点的坐标为Q1(2,)或Q2(4,4)或Q3(,).
30、解:(1)连接AD,设点A的坐标为(a,0),
由图2知,DO+OA=6cm,
DO=6﹣AO,
由图2知S△AOD=4,
∴DO•AO=4,
∴a2﹣6a+8=0,
解得a=2或a=4,
由图2知,DO>3,
∴AO<3,
∴a=2,
∴A的坐标为(2,0),
D点坐标为(0,4),
在图1中,延长CB交x轴于M,
由图2,知AB=5cm,CB=1cm,
∴MB=3,
∴AM==4.
∴OM=6,
∴B点坐标为(6,3);
(2)显然点P一定在AB上.设点P(x,y),连PC.PO,则
S四边形DPBC=S△DPC+S△PBC=S五边形OABCD=(S矩形OMCD﹣S△ABM)=9,
∴6×(4﹣y)+×1×(6﹣x)=9,
即x+6y=12,
同理,由S四边形DPAO=9可得2x+y=9,
由A(2,0),B(6,3)求得直线AB的函数关系式为y=,
由[或或]
解得x=,y=.
∴P(,),
设直线PD的函数关系式为y=kx+4,
则=k+4,
∴k=﹣,
∴直线PD的函数关系式为y=﹣x+4.