- 2.66 MB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2010中考数学分类汇编
一、选择题
1.(2010甘肃兰州)观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有
A.1个 B.2个 C.3个 D.4个
【答案】B
2.(10湖南益阳)小军将一个直角三角板(如图1)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是
A. B. C. D.
【答案】D
3.(2010江苏南通) 如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对
称中心O旋转180°,则点D所转过的路径长为
(第9题)
A
B
C
D
O
A.4π cm B.3π cm
C.2π cm D.π cm
【答案】C
4.(2010江苏盐城)以下图形中,既是轴对称图形,又是中心对称图形的是
A.等边三角形 B.矩形 C.等腰梯形 D.平行四边形
【答案】B
5.(2010辽宁丹东市)把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是( )
第8题图
A.(10+2)cm B.(10+)cm C.22cm D.18cm
【答案】A
6.(2010山东青岛)下列图形中,中心对称图形有( ).
【答案】C
7.(2010山东烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是
【答案】B
8.(2010四川凉山)下列图案中,只要用其中一部分平移一次就可以得到的是
A. B. C. D.
【答案】B
9.(2010台湾) 将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另
一条对角线对折,如图(七)所示。 最后将图(七)的色纸剪下一纸片,
如图(八)所示。若下列有一图形 为图(八)的展开图,则此图为何?
图(六)
图(七)
图(八)
(A)
(B)
(C)
(D)
【答案】B
10.(2010浙江杭州)如图,在△中, . 在同一平面内, 将△绕点旋 转到△的位置, 使得, 则
A. B. C. D.
【答案】C
11.(2010浙江宁波)下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是
(C)
(B)
(A)
(D)
【答案】C
12.(2010 浙江义乌)下列几何图形中,即是中心对称图形又是轴对称图形的是( ▲ )
A.正三角形 B.等腰直角三角形 C.等腰梯形 D.正方形
【答案】D
13.(2010 重庆)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心按逆时针方向进行旋转,每次均旋转,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是( )
图① 图② 图③ 图④
…
A.图① B.图② C.图③ D.图④
【答案】B
14.(2010重庆市潼南县)如图,△ABC经过怎样的平移得到△DEF ( )
A.把△ABC向左平移4个单位,再向下平移2个单位
B.把△ABC向右平移4个单位,再向下平移2个单位
C.把△ABC向右平移4个单位,再向上平移2个单位
D.把△ABC向左平移4个单位,再向上平移2个单位
【答案】C
15.(2010 浙江义乌)如图,将三角形纸片沿折叠,使点落在边上的点处,且∥,下列结论中,一定正确的个数是( ▲ )
①是等腰三角形 ②
③四边形是菱形 ④
A
B
C
D
E
F
A.1 B.2 C.3 D.4
【答案】C
16.(2010江苏宿迁)在平面直角坐标系中,线段AB的端点A的坐标为(-3,2),将其先向右平移4个单位,再向下平移3个单位,得到线段A′B′,则点A对应点A′的坐标为 ▲ .
【答案】(1,-1)
17.(2010浙江金华)如图, 在平面直角坐标系中, 若△ABC与△A1B1C1关于E点成中心对称, 则对称中心E点的坐标是 ▲ .
(第14题图)
A
O
x
y
1
2
-1
-2
-3
-1
1
2
3
4
-4
B
C
A1
C1
B1
5
【答案】(3,-1)
18.19.20.
21.22.23.24.25.26.27.28.29.30.
二、填空题
1.(2010江苏南京) 如图,点C在⊙O上,将圆心角∠AOB绕点O按逆时针方向旋转到∠,旋转角为。若∠AOB=30°,∠BCA’=40°,则∠= °。
【答案】110
2.(2010江苏南京)如图,AB⊥BC,AB=BC=2cm,弧OA与弧OC关于点O中心对称,则AB、BC、弧CO、弧OA所围成的面积是 cm2。
【答案】2
3.(2010江苏南通)如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折
纸游戏,他将纸片沿EF折叠后,D、C两点分别落在D ′、C ′的位
置,并利用量角器量得∠EFB=65°,则∠AED ′等于 ▲ 度.
E
D
B
D′
A
(第16题)
F
C
C′
【答案】50
4.(2010江苏盐城)小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为 ▲ .
A
B
C
D
A
B
C
D
E
F
①
②
A
B
C
D
E
G
M
N
③
【答案】
5.(2010山东济宁) 如图,是经过某种变换后得到的图形.如果中任意一点的坐标为(,),那么它的对应点的坐标为 .
(第13题)
【答案】(,)
6.(2010山东日照)已知以下四个汽车标志图案:
其中是轴对称图形的图案是 (只需填入图案代号).
【答案】①,③
7.(2010山东威海)如图,点A,B,C的坐标分别为(2,4),(5,2),
(3,-1).若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标为 .
【答案】﹙0,1﹚;
8.(2010山东聊城)如图,在Rt△ABC中,∠ACB=90º,∠BAC=60º,AB=6.Rt△AB´C´可以看作是由Rt△ABC绕A点逆时针方向旋转60º得到的,则线段B´C的长为____________.
【答案】
9.(2010江苏宿迁)如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为 ▲ .
【答案】32
10.
11.12.13.14.15.16.17.18.19.20.
21.22.23.24.25.26.27.28.29.30.
三、解答题
1.(2010江苏苏州) (本题满分9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4 cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐 ▲ .
(填“不变”、“变大”或“变小”)
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,
求出AD的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.
【答案】
2.(2010安徽蚌埠二中提前)如图1、2是两个相似比为:的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合。
⑴ 在图3中,绕点旋转小直角三角形,使两直角边分别与交于点,
求证:;
⑵ 若在图3中,绕点旋转小直角三角形,使它的斜边和延长线分别与交于点,如图5,此时结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由。
D
A
C
B
图3
B
A
C
图2
D
图1
D
B
F
E
图5
C
D
B
A
C
F
E
A
图4
⑶ 如图,在正方形中,分别是边上的点,满足的周长等于正方形的周长的一半,分别与对角线交于,试问线段、、能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由。
N
F
M
E
B
D
A
C
【答案】⑴ 在图4中,由于,将绕点旋转,得,
、。连接
在中有
又垂直平分
代换得
在图5中,由,将绕点旋转,得
连接
在中有
又可证≌,得V
代换得
(3)将绕点瞬时针旋转,得,且
N
F
M
E
B
D
A
C
G
因为的周长等于正方形周长的一半,所以
化简得从而可得≌,
推出
此时该问题就转化为图5中的问题了。由前面的结论知:
,再由勾股定理的逆定理知:
线段、、可构成直角三角形。
3.(2010安徽省中中考)在小正方形组成的15×15的网络中,四边形ABCD和四边形的位置如图所示。
⑴现把四边形ABCD绕D点按顺时针方向旋转900,画出相应的图形,
⑵若四边形ABCD平移后,与四边形成轴对称,写出满足要求的一种平移方法,并画出平移后的图形
【答案】
4.(2010安徽芜湖)(本小题满分14分)如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(-3,1)、C(-3,0)、O(0,0).将此矩形沿着过E(-,1)、F(-,0)的直线EF向右下方翻折,B、C的对应点分别为B′、C′.
(1)求折痕所在直线EF的解析式;
(2)一抛物线经过B、E、B′三点,求此二次函数解析式;
(3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.
【答案】
5.(2010广东广州,25,14分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB于点E.
(1)记△ODE的面积为S,求S与的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.
C
D
B
A
E
O
【答案】(1)由题意得B(3,1).
若直线经过点A(3,0)时,则b=
若直线经过点B(3,1)时,则b=
若直线经过点C(0,1)时,则b=1
①若直线与折线OAB的交点在OA上时,即1<b≤,如图25-a,
图1
此时E(2b,0)
∴S=OE·CO=×2b×1=b
②若直线与折线OAB的交点在BA上时,即<b<,如图2
图2
此时E(3,),D(2b-2,1)
∴S=S矩-(S△OCD+S△OAE +S△DBE )
= 3-[(2b-1)×1+×(5-2b)·()+×3()]=
∴
(2)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形OA1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积。
本题答案由无锡市天一实验学校金杨建老师草制!
图3
由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形
根据轴对称知,∠MED=∠NED
又∠MDE=∠NED,∴∠MED=∠MDE,∴MD=ME,∴平行四边形DNEM
为菱形.
过点D作DH⊥OA,垂足为H,
由题易知,tan∠DEN=,DH=1,∴HE=2,
设菱形DNEM 的边长为a,
则在Rt△DHM中,由勾股定理知:,∴
∴S四边形DNEM=NE·DH=
∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为.
6.如图,在平面直角坐标系中,△ ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3)。
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;
(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2,并写出点C2的坐标;,
(3)将△A2B2C2平移得到△ A3B3C3,使点A2的对应点是A3,点B2的对应点是B3
,点C2的对应点是C3(4,-1),在坐标系中画出△ A3B3C3,并写出点A3,B3的坐标。
【答案】
(1)C1(-1,-3) (2)C2(3,1) (3)A3(2,-2),B3(2,-1)
7.(2010山东威海)A1
B1
C1
A
B
C
(图①)
如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1.
A
B(A1)
C
B1
C1
图 ②
E
﹙1﹚将△ABC,△A1B1C1如图②摆放,使点A1与B重合,点B1在AC边的延长线上,连接CC1交BB1于点E.求证:∠B1C1C=∠B1BC.
A1
C1
C
A
B(B1)
图 ③
F
﹙2﹚若将△ABC,△A1B1C1如图③摆放,使点B1与B重合,点A1在AC边的延长线上,连接CC1交A1B于点F.试判断∠A1C1C与∠A1BC是否相等,并说明理由.
﹙3﹚写出问题﹙2﹚中与△A1FC相似的三角形 .
【答案】
(1)证明:由题意,知△ABC≌△A1B1C1,
∴ AB= A1B1,BC1=AC,∠2=∠7,∠A=∠1.
∴ ∠3=∠A=∠1. ……………………………………………………………………1分
∴ BC1∥AC.
∴ 四边形ABC1C是平行四边形. ………………2分
A
B(A1)
C
B1
C1
图 ②
E
1
4
3
2
5
6
7
∴ AB∥CC1.
∴ ∠4=∠7=∠2. …………………………………3分
∵ ∠5=∠6,
∴ ∠B1C1C=∠B1BC.……………………………4分
﹙2﹚∠A1C1C =∠A1BC. …………………………5分
理由如下:由题意,知△ABC≌△A1B1C1,
∴ AB= A1B1,BC1=BC,∠1=∠8,∠A=∠2.
A1
C1
C
A
B(B1)
图 ③
F
3
6
4
5
1
2
7
8
∴ ∠3=∠A,∠4=∠7. ………………………6分
∵ ∠1+∠FBC=∠8+∠FBC,
∴ ∠C1BC=∠A1BA. …………………………7分
∵ ∠4=(180°-∠C1BC),∠A=(180°-∠A1BA).
∴ ∠4=∠A. …………………………………8分
∴ ∠4=∠2.
∵ ∠5=∠6,
∴ ∠A1C1C=∠A1BC.……………………………………………………………………9分
﹙3﹚△C1FB,…………10分; △A1C1B,△ACB.…………11分﹙写对一个不得分﹚
8.(2010四川凉山)有一张矩形纸片,、分别是、上的点(但不与顶点重合),若将矩形分成面积相等的两部分,设,,。
(1) 求证:;
(2) 用剪刀将该纸片沿直线剪开后,再将梯形纸片沿AB对称翻折,平移拼接在梯形的下方,使一底边重合,一腰落在DC的延长线上,拼接后,下方梯形记作。当为何值时,直线经过原矩形的顶点D。
A
B
C
D
F
E
E
F
A
B
C
D
第22题图
【答案】
9.(2010四川眉山)如图,Rt△AB ¢C ¢ 是由Rt△ABC绕点A顺时针旋转得到的,连结CC ¢ 交斜边于点E,CC ¢ 的延长线交BB ¢ 于点F.
(1)证明:△ACE∽△FBE;
(2)设∠ABC=,∠CAC ¢ =,试探索、满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.
【答案】
(1)证明:∵Rt△AB ¢C ¢ 是由Rt△ABC绕点A顺时针旋转得到的,
∴AC=AC ¢,AB=AB ¢,∠CAB=∠C ¢AB ¢ ………………(1分)
∴∠CAC ¢=∠BAB ¢
∴∠ACC ¢=∠ABB ¢ ……………………………………(3分)
又∠AEC=∠FEB
∴△ACE∽△FBE ……………………………………(4分)
(2)解:当时,△ACE≌△FBE. …………………(5分)
在△ACC¢中,∵AC=AC ¢,
∴ ………(6分)
在Rt△ABC中,
∠ACC¢+∠BCE=90°,即,
∴∠BCE=.
∵∠ABC=,
∴∠ABC=∠BCE ……………………(8分)
∴CE=BE
由(1)知:△ACE∽△FBE,
∴△ACE≌△FBE.………………………(9分)
10.(2010浙江宁波)如图1,在平面直角坐标系中,O是坐标原点,□ABCD的顶点A的坐标为(-2,0),点
D的坐标为 (0,),点B在轴的正半轴上,点E为线段AD的中点,过点E的直
线与轴交于点F,与射线DC交于点G.
(1)求∠DCB的度数;
(2)当点F的坐标为(-4,0)时,求点G的坐标;
(3)连结OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF’,记直线EF’与射线DC的交点为H.
①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;
②若△EHG的面积为,请直接写出点F的坐标.
(图2)
(图1)
【答案】
解:(1) 在Rt△AOD中,
∵tan∠DAO=,
∴ ∠DAB=60°. 2分
∵四边形ABCD是平行四边形
∴∠DCB=∠DAB=60° 3分
(2) ∵四边形ABCD是平行四边形
∴CD∥AB
∴∠DGE=∠AFE
又∵∠DEG=∠AEF,DE=AE
∴△DEG≌△AEF 4分
∴DG=AF
∵AF=OF-OA=4-2=2
∴DG=2
∴点G的坐标为(2,) 6分
(3)①∵CD∥AB
∴∠DGE=∠OFE
∵△OEF经轴对称变换后得到△OEF’
∴∠OFE=∠OF’E 7分
∴∠DGE=∠OF’E
在Rt△AOD中,∵E是AD的中点 ∴OE=AD=AE
又∵∠EAO=60°
∴∠EOA=60°, ∠AEO=60°
又∵∠EOF’=∠EOA=60°
∴∠EOF’=∠OEA
∴AD∥OF’ 8分
∴∠OF′E=∠DEH
∴∠DEH=∠DGE
又∵∠HDE=∠EDG
∴△DHE∽△DEG 9分
②点F的坐标是F1(,0),F2(,0). 12分
(给出一个得2分)
对于此小题,我们提供如下详细解答,对学生无此要求.
过点E作EM⊥直线CD于点M,
M
∵CD∥AB
∴∠EDM=∠DAB=60°
∴
∵
∴
∵△DHE∽△DEG
∴ 即
当点在点的右侧时,设,
∴
解得:(舍)
∵△DEG≌△AEF
∴AF=DG=
∵OF=AO+AF=
∴点F的坐标为(,0)
当点在点的左侧时,设,
∴
解得:(舍)
∵△DEG≌△AEF
∴AF=DG=
∵OF=AO+AF=
∴点F的坐标为(,0)
综上可知, 点F的坐标有两个,分别是F1(,0),F2(,0).
11.(2010浙江绍兴)分别按下列要求解答:
(1)在图1中,将△ABC先向左平移5个单位,再作关于直线AB的轴对称图形,经两次变换后得到△A1B1 C1.画出△A1B1C1;
(2)在图2中,△ABC经变换得到△A2B2C2.描述变换过程.
0 1 2 3 4 5 6 7 8 9 10 12
11
12
11
10
9
8
7
6
5
4
3
2
1
A
B
C
A2
B2
C2
0 1 2 3 4 5 6 7 8 9 10 12
11
12
11
10
9
8
7
6
5
4
3
2
1
A
B
C
【答案】
(1) 如图.
(2) 将△ABC先关于点A作中心对称图形,再向左平移
2个单位,得到△A2B2C2.(变换过程不唯一)
12.(2010 浙江台州市)如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转, DE,DF分别交线段AC于点M,K.
(1)观察: ①如图2、图3,当∠CDF=0° 或60°时,AM+CK_______MK(填“>”,“<”或“=”).
②如图4,当∠CDF=30° 时,AM+CK___MK(只填“>”或“<”).
(2)猜想:如图1,当0°<∠CDF<60°时,AM+CK_______MK,证明你所得到的结论.
图1
图2
图3
(第23题)
图4
(3)如果,请直接写出∠CDF的度数和的值.
【答案】
(1)① =
② >
(2)>
证明:作点C关于FD的对称点G,
连接GK,GM,GD,
则CD=GD ,GK = CK,∠GDK=∠CDK,
∵D是AB的中点,∴AD=CD=GD.
∵30°,∴∠CDA=120°,
∵∠EDF=60°,∴∠GDM+∠GDK=60°,
∠ADM+∠CDK =60°.
∴∠ADM=∠GDM,
∵DM=DM,
∴△ADM≌△GDM,∴GM=AM.
∵GM+GK>MK,∴AM+CK>MK.
(3)∠CDF=15°,.
13.(2010 浙江义乌)如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连结AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连结QE并延长交射线BC于点F.
(1)如图2,当BP=BA时,∠EBF= ▲ °,猜想∠QFC= ▲ °;
(2)如图1,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明;
(3)已知线段AB=,设BP=,点Q到射线BC的距离为y,求y关于的函数关系式.
图2
A
B
E
Q
P
F
C
图1
A
C
B
E
Q
F
P
【答案】
解:
图1
A
C
B
E
Q
F
P
(1) 30°
= 60
H
不妨设BP>, 如图1所示
∵∠BAP=∠BAE+∠EAP=60°+∠EAP
图2
A
B
E
Q
P
F
C
∠EAQ=∠QAP+∠EAP=60°+∠EAP
∴∠BAP=∠EAQ
在△ABP和△AEQ中 AB=AE,∠BAP=∠EAQ, AP=AQ
∴△ABP≌△AEQ
∴∠AEQ=∠ABP=90°
∴∠BEF
∴=60°
(事实上当BP≤时,如图2情形,不失一般性结论仍然成立,不分类讨论不扣分)
(3)在图1中,过点F作FG⊥BE于点G
∵△ABE是等边三角形 ∴BE=AB=,由(1)得30°
在Rt△BGF中, ∴BF= ∴EF=2 ∵△ABP≌△AEQ ∴QE=BP= ∴QF=QE+EF
过点Q作QH⊥BC,垂足为H
在Rt△QHF中,(x>0)
即y关于x的函数关系式是:
14.(2010 福建德化)(12分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0<α<120°),得△A1BC1,交AC于点E,AC分别交A1C1、BC于D、F两点.
(1)如图①,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;
(2)如图②,当=30°时,试判断四边形BC1DA的形状,并说明理由;
(3)在(2)的情况下,求ED的长.
C1
A1
F
E
D
C
B
A
图①
C1
A1
F
E
D
C
B
A
图②
【答案】(1);提示证明
(2)①菱形(证明略)
(3)过点E作EG⊥AB,则AG=BG=1
在中,
由(2)知AD=AB=2 ∴
15.16.17.18.19.20.
21.22.23.24.25.26.27.28.29.30.