- 106.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2015年中考数学备考资料
2014年中考数学真题分类解析-三角形的边与角
关于本文档:
l 朱永强 搜集整理
l 共22页
目录
一、选择题 1
二、填空题 5
一、选择题
1. ( 2014•广东,第9题3分)一个等腰三角形的两边长分别是3和7,则它的周长为( )
A.
17
B.
15
C.
13
D.
13或17
考点:
等腰三角形的性质;三角形三边关系.
解答:
解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;
②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.
故这个等腰三角形的周长是17.
故选A.
2. ( 2014•广西玉林市、防城港市,第10题3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是( )
A.
1cm<AB<4cm
B.
5cm<AB<10cm
C.
4cm<AB<8cm
D.
4cm<AB<10cm
考点:
等腰三角形的性质;解一元一次不等式组;三角形三边关系.
解答:
解:∵在等腰△ABC中,AB=AC,其周长为20cm,
∴设AB=AC=xcm,则BC=(20﹣2x)cm,
∴,
解得5cm<x<10cm.
故选B.
3. (2014•湖南邵阳,第5题3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是( )
A.
45°
B.
54°
C.
40°
D.
50°
考点:
平行线的性质;三角形内角和定理
解答:
解:∵∠B=46°,∠C=54°,
∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,
∵AD平分∠BAC,
∴∠BAD=∠BAC=×80°=40°,
∵DE∥AB,
∴∠ADE=∠BAD=40°.
故选C.
4.(2014·台湾,第18题3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?( )
A.24 B.30 C.32 D.36
解:∵直线M为∠ABC的角平分线,
∴∠ABP=∠CBP.
∵直线L为BC的中垂线,
∴BP=CP,
∴∠CBP=∠BCP,
∴∠ABP=∠CBP=∠BCP,
在△ABC中,3∠ABP+∠A+∠ACP=180°,
即3∠ABP+60°+24°=180°,
解得∠ABP=32°.
故选C.
5.(2014·台湾,第20题3分)如图,有一△ABC,今以B为圆心,AB长为半径画弧,交BC于D点,以C为圆心,AC长为半径画弧,交BC于E点.若∠B=40°,∠C=36°,则关于AD、AE、BE、CD的大小关系,下列何者正确?( )
A.AD=AE B.AE<AE C.BE=CD D.BE<CD
解:∵∠C<∠B,
∴AB<AC,
即BE+ED<ED+CD,
∴BE<CD.
故选D.
6.(2014·云南昆明,第5题3分)如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )
A. 85° B. 80°
C. 75° D. 70°
考点:
角平分线的性质,三角形外角性质.
解答:
解:∠ABC=70°,BD平分∠ABC
∠A=50°
∠BDC
故选A.
7. (2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )
A.
1,2,3
B.
1,1,
C.
1,1,
D.
1,2,
考点:
解直角三角形
专题:
新定义.
解答:
解:A、∵1+2=3,不能构成三角形,故选项错误;
B、∵12+12=()2,是等腰直角三角形,故选项错误;
C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;
D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.
故选:D.
二、填空题
1. ( 2014•福建泉州,第15题4分)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= 110 °.
考点:
等腰三角形的性质.
解答:
解:∵CA=CB,
∴∠A=∠ABC,
∵∠C=40°,
∴∠A=70°
∴∠ABD=∠A+∠C=110°.
故答案为:110.
2. (2014•扬州,第10题,3分)若等腰三角形的两条边长分别为7cm和14cm,则它的周长为 35 cm.
考点:
等腰三角形的性质;三角形三边关系.
解答:
解:①14cm为腰,7cm为底,此时周长为14+14+7=35cm;
②14cm为底,7cm为腰,则两边和等于第三边无法构成三角形,故舍去.
故其周长是35cm.
故答案为35.
3. (2014•扬州,第15题,3分)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE= 50° .
(第2题图)
考点:
圆的认识;三角形内角和定理;等腰三角形的性质.
解答:
解:∵∠A=65°,
∴∠B+∠C=180°﹣65°=115°,
∴∠BDO=∠DBO,∠OEC=∠OCE,
∴∠BDO+∠DBO+∠OEC+∠OCE=2×115°=230°,
∴∠BOD+∠EOC=2×180°﹣230°=130°,
∴∠DOE=180°﹣130°=50°,
故答案为:50°.
三.解答题
1. (2014•益阳,第15题,6分)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.
(第1题图)
考点:
平行线的性质.
解答:
解:∵EF∥BC,
∴∠BAF=180°﹣∠B=100°,
∵AC平分∠BAF,
∴∠CAF=∠BAF=50°,
∵EF∥BC,
∴∠C=∠CAF=50°.