- 512.04 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2020年浙江省温州市中考数学试卷
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)
1.(4分)数1,0,-23,﹣2中最大的是( )
A.1 B.0 C.-23 D.﹣2
2.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为( )
A.17×105 B.1.7×106 C.0.17×107 D.1.7×107
3.(4分)某物体如图所示,它的主视图是( )
A. B. C. D.
4.(4分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( )
A.47 B.37 C.27 D.17
5.(4分)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为( )
A.40° B.50° C.60° D.70°
6.(4分)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:
第24页(共24页)
株数(株)
7
9
12
2
花径(cm)
6.5
6.6
6.7
6.8
这批“金心大红”花径的众数为( )
A.6.5cm B.6.6cm C.6.7cm D.6.8cm
7.(4分)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为( )
A.1 B.2 C.2 D.3
8.(4分)如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为( )
A.(1.5+150tanα)米 B.(1.5+150tanα)米
C.(1.5+150sinα)米 D.(1.5+150sinα)米
9.(4分)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则( )
A.y3<y2<y1 B.y3<y1<y2 C.y2<y3<y1 D.y1<y3<y2
10.(4分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为( )
第24页(共24页)
A.14 B.15 C.83 D.65
二、填空题(本题有6小题,每小题5分,共30分)
11.(5分)分解因式:m2﹣25= .
12.(5分)不等式组x-3<0,x+42≥1的解为 .
13.(5分)若扇形的圆心角为45°,半径为3,则该扇形的弧长为 .
14.(5分)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有 头.
15.(5分)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的
值为 .
第24页(共24页)
16.(5分)如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C点发现∠1=∠2.测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB为 米,BC为 米.
三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)
17.(10分)(1)计算:4-|﹣2|+(6)0﹣(﹣1).
(2)化简:(x﹣1)2﹣x(x+7).
18.(8分)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.
(1)求证:△ABC≌△DCE.
(2)连结AE,当BC=5,AC=12时,求AE的长.
19.(8分)A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.
(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.
(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.
第24页(共24页)
20.(8分)如图,在6×4的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A,B,C,D重合.
(1)在图1中画格点线段EF,GH各一条,使点E,F,G,H分别落在边AB,BC,CD,DA上,且EF=GH,EF不平行GH.
(2)在图2中画格点线段MN,PQ各一条,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且PQ=5MN.
21.(10分)已知抛物线y=ax2+bx+1经过点(1,﹣2),(﹣2,13).
(1)求a,b的值.
(2)若(5,y1),(m,y2)是抛物线上不同的两点,且y2=12﹣y1,求m的值.
22.(10分)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AC上一点,∠ADC=∠G.
(1)求证:∠1=∠2.
(2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径.
第24页(共24页)
23.(12分)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.
(1)4月份进了这批T恤衫多少件?
(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.
①用含a的代数式表示b.
②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.
24.(14分)如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知y=-65x+12,当Q为BF中点时,y=245.
(1)判断DE与BF的位置关系,并说明理由.
(2)求DE,BF的长.
(3)若AD=6.
①当DP=DF时,通过计算比较BE与BQ的大小关系.
②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.
第24页(共24页)
2020年浙江省温州市中考数学试卷
参考答案与试题解析
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)
1.(4分)数1,0,-23,﹣2中最大的是( )
A.1 B.0 C.-23 D.﹣2
【解答】解:﹣2<-23<0<1,
所以最大的是1.
故选:A.
2.(4分)原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示为( )
A.17×105 B.1.7×106 C.0.17×107 D.1.7×107
【解答】解:1700000=1.7×106,
故选:B.
3.(4分)某物体如图所示,它的主视图是( )
A. B. C. D.
【解答】解:根据主视图就是从正面看物体所得到的图形可知:选项A所表示的图形符合题意,
故选:A.
4.(4分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( )
A.47 B.37 C.27 D.17
第24页(共24页)
【解答】解:从布袋里任意摸出1个球,是红球的概率=27.
故选:C.
5.(4分)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为( )
A.40° B.50° C.60° D.70°
【解答】解:∵在△ABC中,∠A=40°,AB=AC,
∴∠C=(180°﹣40°)÷2=70°,
∵四边形BCDE是平行四边形,
∴∠E=70°.
故选:D.
6.(4分)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:
株数(株)
7
9
12
2
花径(cm)
6.5
6.6
6.7
6.8
这批“金心大红”花径的众数为( )
A.6.5cm B.6.6cm C.6.7cm D.6.8cm
【解答】解:由表格中的数据可得,
这批“金心大红”花径的众数为6.7,
故选:C.
7.(4分)如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为( )
A.1 B.2 C.2 D.3
第24页(共24页)
【解答】解:连接OB,
∵四边形OABC是菱形,
∴OA=AB,
∵OA=OB,
∴OA=AB=OB,
∴∠AOB=60°,
∵BD是⊙O的切线,
∴∠DBO=90°,
∵OB=1,
∴BD=3OB=3,
故选:D.
8.(4分)如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为( )
A.(1.5+150tanα)米 B.(1.5+150tanα)米
C.(1.5+150sinα)米 D.(1.5+150sinα)米
【解答】解:过点A作AE⊥BC,E为垂足,如图所示:
则四边形ADCE为矩形,AE=150,
∴CE=AD=1.5,
在△ABE中,∵tanα=BEAE=BE150,
∴BE=150tanα,
∴BC=CE+BE=(1.5+150tanα)(m),
第24页(共24页)
故选:A.
9.(4分)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则( )
A.y3<y2<y1 B.y3<y1<y2 C.y2<y3<y1 D.y1<y3<y2
【解答】解:抛物线的对称轴为直线x=--122×(-3)=-2,
∵a=﹣3<0,
∴x=﹣2时,函数值最大,
又∵﹣3到﹣2的距离比1到﹣2的距离小,
∴y3<y1<y2.
故选:B.
10.(4分)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为( )
A.14 B.15 C.83 D.65
【解答】解:如图,连接EC,CH.设AB交CR于J.
第24页(共24页)
∵四边形ACDE,四边形BCJHD都是正方形,
∴∠ACE=∠BCH=45°,
∵∠ACB=90°,∠BCI=90°,
∴∠ACE+∠ACB+∠BCH=180°,∠ACB+∠BCI=90°
∴B,C,H共线,A,C,I共线,
∵DE∥AI∥BH,
∴∠CEP=∠CHQ,
∵∠ECP=∠QCH,
∴△ECP∽△HCQ,
∴PCCQ=CECH=EPHQ=12,
∵PQ=15,
∴PC=5,CQ=10,
∵EC:CH=1:2,
∴AC:BC=1:2,设AC=a,BC=2a,
∵PQ⊥CRCR⊥AB,
∴CQ∥AB,
∵AC∥BQ,CQ∥AB,
∴四边形ABQC是平行四边形,
∴AB=CQ=10,
∵AC2+BC2=AB2,
∴5a2=100,
∴a=22(负根已经舍弃),
∴AC=25,BC=45,
第24页(共24页)
∵12•AC•BC=12•AB•CJ,
∴CJ=25×4510=4,
∵JR=AF=AB=10,
∴CR=CJ+JR=14,
故选:A.
二、填空题(本题有6小题,每小题5分,共30分)
11.(5分)分解因式:m2﹣25= (m+5)(m﹣5) .
【解答】解:原式=(m﹣5)(m+5),
故答案为:(m﹣5)(m+5).
12.(5分)不等式组x-3<0,x+42≥1的解为 ﹣2≤x<3 .
【解答】解:x-3<0①x+42≥1②,
解①得x<3;
解②得x≥﹣2.
故不等式组的解集为﹣2≤x<3.
故答案为:﹣2≤x<3.
13.(5分)若扇形的圆心角为45°,半径为3,则该扇形的弧长为 34π .
【解答】解:根据弧长公式:l=45⋅π×3180=34π,
故答案为:34π.
14.(5分)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有 140 头.
第24页(共24页)
【解答】解:由直方图可得,
质量在77.5kg及以上的生猪:90+30+20=140(头),
故答案为:140.
15.(5分)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的
值为 275 .
【解答】解:∵CD=DE=OE,
∴可以假设CD=DE=OE=a,
则P(k3a,3a),Q(k2a,2a),R(ka,a),
∴CP=3k3a,DQ=k2a,ER=ka,
∴OG=AG,OF=2FG,OF=23GA,
∴S1=23S3=2S2,
∵S1+S3=27,
∴S3=815,S1=545,S2=275,
第24页(共24页)
故答案为275.
16.(5分)如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C点发现∠1=∠2.测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB为 152 米,BC为 202 米.
【解答】解:∵AE⊥l,BF⊥l,
∵∠ANE=45°,
∴△ANE和△BNF是等腰直角三角形,
∴AE=EN,BF=FN,
∴EF=15米,FM=2米,MN=8米,
∴AE=EN=15+2+8=25(米),BF=FN=2+8=10(米),
∴AN=252,BN=102,
∴AB=AN﹣BN=152(米);
过C作CH⊥l于H,过B作PQ∥l交AE于P,交CH于Q,
∴AE∥CH,
∴四边形PEHQ和四边形PEFB是矩形,
∴PE=BF=QH=10,PB=EF=15,BQ=FH,
∵∠1=∠2,∠AEF=∠CHM=90°,
∴△AEF∽△CHM,
∴CHHM=AEEF=2515=53,
∴设MH=3x,CH=5x,
∴CQ=5x﹣10,BQ=FH=3x+2,
第24页(共24页)
∵∠APB=∠ABC=∠CQB=90°,
∴∠ABP+∠PAB=∠ABP+∠CBQ=90°,
∴∠PAB=∠CBQ,
∴△APB∽△BQC,
∴APBQ=PBCQ,
∴153x+2=155x-10,
∴x=6,
∴BQ=CQ=20,
∴BC=202,
故答案为:152,202.
三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)
17.(10分)(1)计算:4-|﹣2|+(6)0﹣(﹣1).
(2)化简:(x﹣1)2﹣x(x+7).
【解答】解:(1)原式=2﹣2+1+1
=2;
(2)(x﹣1)2﹣x(x+7)
=x2﹣2x+1﹣x2﹣7x
=﹣9x+1.
18.(8分)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.
(1)求证:△ABC≌△DCE.
第24页(共24页)
(2)连结AE,当BC=5,AC=12时,求AE的长.
【解答】证明:(1)∵AB∥DE,
∴∠BAC=∠D,
又∵∠B=∠DCE=90°,AC=DE,
∴△ABC≌△DCE(AAS);
(2)∵△ABC≌△DCE,
∴CE=BC=5,
∵∠ACE=90°,
∴AE=AC2+CE2=25+144=13.
19.(8分)A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.
(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.
(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.
【解答】解:(1)选择两家酒店月盈利的平均值;
xA=1+1.6+2.2+2.7+3.5+46=2.5,
xB=2+3+1.7+1.8+1.7+3.66=2.3;
(2)平均数,方差反映酒店的经营业绩,A酒店的经营状况较好.
第24页(共24页)
理由:A酒店盈利的平均数为2.5,B酒店盈利的平均数为2.3.A酒店盈利的方差为1.073,B酒店盈利的方差为0.54,无论是盈利的平均数还是盈利的方差,都是A酒店比较大,故A酒店的经营状况较好.
20.(8分)如图,在6×4的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A,B,C,D重合.
(1)在图1中画格点线段EF,GH各一条,使点E,F,G,H分别落在边AB,BC,CD,DA上,且EF=GH,EF不平行GH.
(2)在图2中画格点线段MN,PQ各一条,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且PQ=5MN.
【解答】解:(1)如图1,线段EF和线段GH即为所求;
(2)如图2,线段MN和线段PQ即为所求.
21.(10分)已知抛物线y=ax2+bx+1经过点(1,﹣2),(﹣2,13).
(1)求a,b的值.
(2)若(5,y1),(m,y2)是抛物线上不同的两点,且y2=12﹣y1,求m的值.
【解答】解:(1)把点(1,﹣2),(﹣2,13)代入y=ax2+bx+1得,-2=a+b+113=4a-2b+1,
第24页(共24页)
解得:a=1b=-4;
(2)由(1)得函数解析式为y=x2﹣4x+1,
把x=5代入y=x2﹣4x+1得,y1=6,
∴y2=12﹣y1=6,
∵y1=y2,
∴对称轴为x=2,
∴m=4﹣5=﹣1.
22.(10分)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AC上一点,∠ADC=∠G.
(1)求证:∠1=∠2.
(2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径.
【解答】解:(1)∵∠ADC=∠G,
∴AC=AD,
∵AB为⊙O的直径,
∴BC=BD,
∴∠1=∠2;
(2)如图,连接DF,
∵AC=AD,AB是⊙O的直径,
∴AB⊥CD,CE=DE,
第24页(共24页)
∴FD=FC=10,
∵点C,F关于DG对称,
∴DC=DF=10,
∴DE=5,
∵tan∠1=25,
∴EB=DE•tan∠1=2,
∵∠1=∠2,
∴tan∠2=25,
∴AE=DEtan∠2=252,
∴AB=AE+EB=292,
∴⊙O的半径为294.
23.(12分)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.
(1)4月份进了这批T恤衫多少件?
(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.
①用含a的代数式表示b.
②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.
【解答】解:(1)设3月份购进x件T恤衫,
18000x+10=390002x,
解得,x=150,
经检验,x=150是原分式方程的解,
则2x=300,
答:4月份进了这批T恤衫300件;
(2)①每件T恤衫的进价为:39000÷300=130(元),
(180﹣130)a+(180×0.8﹣130)(150﹣a)=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)
第24页(共24页)
化简,得
b=150-a2;
②设乙店的利润为w元,
w=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)=54a+36b﹣600=54a+36×150-a2-600=36a+2100,
∵乙店按标价售出的数量不超过九折售出的数量,
∴a≤b,
即a≤150-a2,
解得,a≤50,
∴当a=50时,w取得最大值,此时w=3900,
答:乙店利润的最大值是3900元.
24.(14分)如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知y=-65x+12,当Q为BF中点时,y=245.
(1)判断DE与BF的位置关系,并说明理由.
(2)求DE,BF的长.
(3)若AD=6.
①当DP=DF时,通过计算比较BE与BQ的大小关系.
②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.
【解答】解:(1)DE与BF的位置关系为:DE∥BF,理由如下:
如图1所示:
∵∠A=∠C=90°,
第24页(共24页)
∴∠ADC+∠ABC=360°﹣(∠A+∠C)=180°,
∵DE、BF分别平分∠ADC、∠ABC,
∴∠ADE=12∠ADC,∠ABF=12∠ABC,
∴∠ADE+∠ABF=12×180°=90°,
∵∠ADE+∠AED=90°,
∴∠AED=∠ABF,
∴DE∥BF;
(2)令x=0,得y=12,
∴DE=12,
令y=0,得x=10,
∴MN=10,
把y=245代入y=-65x+12,
解得:x=6,即NQ=6,
∴QM=10﹣6=4,
∵Q是BF中点,
∴FQ=QB,
∵BM=2FN,
∴FN+6=4+2FN,
解得:FN=2,
∴BM=4,
∴BF=FN+MN+MB=16;
(3)①连接EM并延长交BC于点H,如图2所示:
∵FM=2+10=12=DE,DE∥BF,
∴四边形DFME是平行四边形,
∴DF=EM,
∵AD=6,DE=12,∠A=90°,
∴∠DEA=30°,
∴∠DEA=∠FBE=∠FBC=30°,
∴∠ADE=60°,
第24页(共24页)
∴∠ADE=∠CDE=∠FME=60°,
∴∠DFM=∠DEM=120°,
∴∠MEB=180°﹣120°﹣30°=30°,
∴∠MEB=∠FBE=30°,
∴∠EHB=180°﹣30°﹣30°﹣30°=90°,DF=EM=BM=4,
∴MH=12BM=2,
∴EH=4+2=6,
由勾股定理得:HB=BM2-MH2=42-22=23,
∴BE=EH2-HB2=62+(23)2=43,
当DP=DF时,-65x+12=4,
解得:x=203,
∴BQ=14﹣x=14-203=223,
∵223>43,
∴BQ>BE;
②(Ⅰ)当PQ经过点D时,如图3所示:
y=0,
则x=10;
(Ⅱ)当PQ经过点C时,如图4所示:
∵BF=16,∠FCB=90°,∠CBF=30°,
∴CF=12BF=8,
∴CD=8+4=12,
∵FQ∥DP,
∴△CFQ∽△CDP,
∴FQDP=CFCD,
∴2+x-65x+12=812,
解得:x=103;
第24页(共24页)
(Ⅲ)当PQ经过点A时,如图5所示:
∵PE∥BQ,
∴△APE∽△AQB,
∴PEBQ=AEAB,
由勾股定理得:AE=DE2-AD2=122-62=63,
∴AB=63+43=103,
∴12-(-65x+12)14-x=63103,
解得:x=143,
由图可知,PQ不可能过点B;
综上所述,当x=10或x=103或x=143时,PQ所在的直线经过四边形ABCD的一个顶点.
第24页(共24页)
第24页(共24页)