• 386.50 KB
  • 2021-05-10 发布

中考数学几何旋转压轴题

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ 中考数学几何旋转综合题 ‎1、已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.‎ ‎(1)求证:EG=CG;‎ ‎(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. ‎ ‎(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)‎ D F B A C E F B A D C E G F B A D C E G ‎ ‎ ‎2. 在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角a(0°<a<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于D,F两点.‎ ‎(1)如图22-4(a),观察并猜想,在旋转过程中,线段EA1与FC是怎样的数量关系?并证明你的结论;‎ 图23-4(a)‎ ‎(2)如图23-4(b),当a=30°时,试判断四边形BC1DA的形状,并说明理由;‎ 图23-4(b)‎ ‎(3)在(2)的情况下,求ED的长.‎ ‎3. 如图23-8(a),若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形.‎ 图23-8‎ ‎(1)当把△ADE绕A点旋转到图23-8(b)的位置时,D,E,B三点共线,CD=BE是否仍然成立?若成立请证明;若不成立请说明理由;‎ ‎(2)当△ADE绕A点旋转到图23-8(c)的位置时,D,E,B三点不共线,△AMN是否还是等边三角形?若是,请给出证明;并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.‎ ‎4. 如图23-9(a),在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转a°得到四边形OA′B′C′,此时直线OA′,直线B′C′分别与直线BC相交于点P,Q.‎ 图23-9‎ ‎(1)四边形OABC的形状是______,‎ 当a=90°时,的值是______;‎ ‎(2)①如图23-9(b),当四边形OA′B′C′的顶点B′落在y轴的正半轴上时,求的值;‎ ‎②如图23-9(c),当四边形OA′B′C′的顶点B′落在直线BC上时,求△OPB′的面积;‎ ‎(3)在四边形OABC的旋转过程中,当0°<a≤180°时,是否存在这样的点P和点Q,使BP=?若存在,直接写出点P的坐标;若不存在,请说明理由.‎ ‎5. 已知中,为边的中点,绕点旋转,它的两边分别交、(或它们的延长线)于、当绕点旋转到于时(如图1),易证 A E C F B D 图1‎ 图3‎ A D F E C B A D B C E 图2‎ F 当绕点旋转到不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,、、又有怎样的数量关系?请写出你的猜想,不需证明.‎ ‎6将两块含30°角且大小相同的直角三角板如图1摆放。‎ ‎(1)将图1中△绕点C顺时针旋转45°得图2,点与AB的交点,求证:;‎ ‎(2)将图2中△绕点C顺时针旋转30°到△(如图3),点与AB的交点。线段之间存在一个确定的等量关系,请你写出这个关系式并说明理由;‎ ‎(3)将图3中线段绕点C顺时针旋转60°到(如图4),连结,‎ 求证:⊥AB. ‎ ‎7.如图(9)-1,抛物线经过A(,0),C(3,)两点,与轴交于点D,与轴交于另一点B.‎ ‎(1)求此抛物线的解析式;‎ ‎(2)若直线将四边形ABCD面积二等分,求的值;‎ ‎(3)如图(9)-2,过点E(1,1)作EF⊥轴于点F,将△AEF绕平面内某点旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,作MG⊥轴于点G,若线段MG︰AG=1︰2,求点M,N的坐标.‎ D O B A x y C y=kx+1‎ 图(9)-1‎ E F M N G O B A x y 图(9)-2‎ Q ‎8.如图9,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.‎ ‎ (1)当把△ADE绕A点旋转到图10的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(4分)‎ ‎ (2)当△ADE绕A点旋转到图11的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.(6分)‎ 图9 图10 图11‎ 图8‎ ‎[来源:学科网ZXXK]‎ O A B C M N ‎9、在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).‎ ‎(1)求边在旋转过程中所扫过的面积;‎ ‎(2)旋转过程中,当和平行时,求正方形旋转的度数;‎ ‎(3)设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.‎ ‎10、如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.‎ ‎(1)求P点坐标及a的值;‎ ‎(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;‎ ‎(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.‎ y x A O B P N 图2‎ C1‎ C4‎ Q E F 图(2)‎ y x A O B P M 图1‎ C1‎ C2‎ C3‎ 图(1)‎ ‎11、如图,已知抛物线经过,两点,顶点为.‎ ‎(1)求抛物线的解析式;‎ ‎(2)将绕点顺时针旋转90°后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;‎ y x B A O D ‎(第30题)‎ ‎(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.‎