• 116.50 KB
  • 2021-05-10 发布

中考数学分类讨论题型学生版20180614

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
分类讨论题型 姓名 20170314‎ 基础练习 一、选择题 ‎1.若等腰三角形的一个内角为50度,则其他两个内角为( ) ‎ ‎ A.500 ,80o B.650, 650 C.500 ,650 D.500,800或 650,650‎ ‎2.若 A.5或-1 B.-5或1; C.5或1 D.-5或-1‎ ‎3.等腰三角形的一边长为3cm,周长是13cm,那么这个等腰三角形的腰长是( )‎ ‎ A.5cm B.3cm C.5cm或3cm D.不确定 ‎4.若⊙O的弦 AB所对的圆心角∠AOB=60°,则弦AB所对的圆周角的度数为( )‎ ‎ A.300 B、600 C.1500 D.300或 1500‎ ‎5.一次函数y=kx+b,当-3≤x≤l时,对应的y值为l≤y≤9, 则kb值为( )‎ A.14 B.-6 C.-4或21 D.-6或14‎ 二、填空题 6.已知_______. ‎ ‎7.已知⊙O的半径为5cm,AB、CD是⊙O的弦,且 AB=8cm,CD=6cm,AB∥CD,则AB与CD之间的距离为__________.‎ ‎8.矩形一个角的平分线分其一边为1cm和3 cm两部分,则此矩形的面积为_ .‎ ‎9.等腰三角形的一个内角为70°,则其它角为______.‎ ‎10 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则三角形腰长为__ __,底边长为_______.‎ ‎11 矩形ABCD,AD=3,AB=2,则以矩形的一边所在直线为轴旋转一周所得到的圆柱的表面积为__ ___.‎ 专题分类 一、点的位置的确定 ‎1、在△ABC中,∠ABC=90°,AB=4,BC=3,O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交射线AB于点P,交射线CB于点F。‎ ‎(1)如图8,求证:△ADE∽△AEP;‎ ‎(2)设OA=x,AP=y,求y关于x的函数解析式;‎ ‎(3)当BF=1时,求线段AP的长.‎ 二、相似的对应元素的确定 ‎2、如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD内作半圆,点M为圆心.设过A、B两点抛物线的解析式为y=ax2+bx+c,顶点为点N.‎ ‎(1)求过A、C两点直线的解析式;‎ ‎(2)当点N在半圆M内时,求a的取值范围;‎ ‎(3)过点A作⊙M的切线交BC于点F,E为切点,当以点A、F,B为顶点的三角形与以C、N、M为顶点的三角形相似时,求点N的坐标.‎ 三、边角的确定 ‎1.抛物线经过点A (1,0).‎ ‎⑴ 求b的值;‎ ‎⑵ 设P为此抛物线的顶点,B(a,0)(a≠1)为抛物线上的一点,Q是坐标平面内的点.如果以A、B、P、Q为顶点的四边形为平行四边形,试求线段PQ的长.‎ ‎2如图,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A,B关于y轴的对称点分别为点A′,B′.‎ ‎(1)求m的值;‎ ‎(2)求抛物线E2的函数解析式;‎ ‎(3)在第一象限内,抛物线E1上是否存在点Q,使得以点Q,B,B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.‎ ‎3、如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.‎ ‎(1)求抛物线的解析式;‎ ‎(2)求点D的坐标;‎ ‎(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.‎ 四、面积问题中的讨论 ‎1、(2015·攀枝花)如图,已知抛物线y=-x2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P,与直线BC相交于点M,连接PB.‎ ‎(1)求抛物线的解析式;‎ ‎(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出点D坐标及△BCD面积的最大值;若不存在,请说明理由;‎ ‎(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.‎ ‎2、如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,点E是BC的中点,F是AB延长线上一点且FB=1.‎ ‎(1)求经过点O,A,E三点的抛物线解析式;‎ ‎(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;‎ ‎(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.‎ 练习:‎ ‎1.如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.‎ ‎(1)当t为何值时,PQ∥BC?‎ ‎(2)设四边形PQCB的面积为y,求y关于t的函数关系式;‎ ‎(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;‎ ‎(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)‎