- 230.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考总复习:实数—知识讲解 (基础)
撰稿:张晓新 审稿:杜少波
【考纲要求】
1.了解有理数、无理数、实数的概念;借助数轴理解相反数、绝对值的概念及意义,会比较实数的大小;
2.知道实数与数轴上的点一一对应,会用科学记数法表示有理数,会求近似数和有效数字;了解乘方与开方、平方根、算术平方根、立方根的概念,并理解这两种运算之间的关系,了解整数指数幂的意义和基本性质;
3.掌握实数的运算法则,并能灵活运用.
【知识网络】
【考点梳理】
考点一、实数的分类
1.按定义分类:
2.按性质符号分类:
有理数:整数和分数统称为有理数或者“形如(m,n是整数n≠0)”的数叫有理数.
无理数:无限不循环小数叫无理数.
实数:有理数和无理数统称为实数.
要点诠释:
常见的无理数有以下几种形式:
(1)字母型:如π是无理数,等都是无理数,而不是分数;
(2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;
(3)根式型:…都是一些开方开不尽的数;
(4)三角函数型:sin35°、tan27°、cos29°等.
考点二、实数的相关概念
1.相反数
(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0;
(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数;
(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.
2.绝对值
(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.
可用式子表示为:
(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.
用式子表示:若a是实数,则|a|≥0.
要点诠释:
若则则表示的几何意义就是在数轴上表示数a与数b的点之间的距离.
3.倒数
(1)实数的倒数是;0没有倒数;
(2)乘积是1的两个数互为倒数.a、b互为倒数.
4.平方根
(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.
(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.
5.立方根
如果x3=a,那么x叫做a的立方根.
一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根仍是0.
考点三、实数与数轴
规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.
每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.
要点诠释:
(1)数轴的三要素:原点、正方向和单位长度.
(2)实数和数轴上的点是一一对应的.
考点四、实数大小的比较
1.对于数轴上的任意两个点,靠右边的点所表示的数较大.
2.正数都大于0,负数都小于0,正数大于一切负数;两个负数;绝对值大的反而小.
3.对于实数a、b, 若a-b>0a>b;a-b=0a=b;a-b<0ab,b>c,则a>c.
5.无理数的比较大小:
利用平方转化为有理数:如果a>b>0, a2>b2a>b;
或利用倒数转化:如比较与.
要点诠释:
实数大小的比较方法:(1)直接比较法:正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.(2)数轴法:在数轴上,右边的数总比左边的数大.
考点五、实数的运算
1.加法
同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.
满足运算律:加法的交换律a+b=b+a,加法的结合律(a+b)+c=a+(b+c).
2.减法
减去一个数等于加上这个数的相反数.
3.乘法
两数相乘,同号得正,异号得负,并把绝对值相乘.
几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.
乘法运算的运算律:(1)乘法交换律ab=ba;(2)乘法结合律(ab)c=a(bc);(3)乘法对加法的分配律a(b+c)=ab+ac.
4.除法
(1)除以一个数,等于乘上这个数的倒数.
(2)两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.
5.乘方与开方
(1)求n个相同因数的积的运算叫做乘方,a所表示的意义是n个a相乘.
正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.
(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.
(3)零指数与负指数
要点诠释:
加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.
考点六、有效数字和科学记数法
一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.
把一个数用±a×10(其中1≤<10,n为整数)的形式记数的方法叫科学记数法.
要点诠释:
(1)当要表示的数的绝对值大于1时,用科学记数法写成a×10,其中1≤<10,n为正整数,其值等于原数中整数部分的数位减去1;
(2)当要表示的数的绝对值小于1时,用科学记数法写成a×10,其中1≤<10,n为负整数,其值等于原数中第一个非零数字前面所用零的个数的相反数(包括小数点前面的零).
【典型例题】
类型一、实数的有关概念
1.(1)a的相反数是,则a的倒数是_______.
(2)实数a、b在数轴上对应点的位置如图所示: 则化简=______.
(3)(泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约____________.
【答案】(1)5 ; (2)-a-b; (3)1.02×107亩.
【解析】(1)注意相反数和倒数概念的区别,互为相反数的两个数只有性质符号不同,互为倒数的两个数要改变分子分母的位置;或者利用互为相反数的两个数之和等于0,互为倒数的两个数乘积等于1来计算.
(2)此题考查绝对值的几何意义,绝对值和二次根式的化简.注意要去掉绝对值符号,要判别绝对值内的数的性质符号.
由图知:
(3)考查科学记数法的概念.
【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解.
举一反三:
【变式】据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为( )
A.8.55×106 B.8.55×107 C.8.55×108 D.8.55×109
【答案】C.
类型二、实数的分类与计算
2.下列实数、sin60°、、、3.14159、-、、中无理数有( )个
A.1 B.2 C.3 D.4
【答案】C.
【解析】无理数有sin60°、、.
【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.
举一反三:
【高清课程名称: 实数 高清ID号: 369214
关联的位置名称(播放点名称):经典例题1】
【变式】在中,哪些是有理数? 哪些是无理数?
【答案】都是有理数;
都是无理数.
3.计算:计算:.
【答案与解析】
【点评】该题是实数的混合运算,包括绝对值,0指数幂、负整数指数幂,正整数指数幂.只要准确把握各自的意义,就能正确的进行运算.
举一反三:
【高清课程名称:实数 高清ID号:369214
关联的位置名称(播放点名称):经典例题8-9】
【变式1】计算:
【答案】;
【变式2】计算:
【答案】
设n=2001,则原式=
(把n2+3n看作一个整体)
=
=n2+3n+1
=n(n+3)+1
=2001×2004+1
=4010005.
类型三、实数大小的比较
4.比较下列每组数的大小:
(1)与 (2)a与(a≠0)
【答案与解析】
(1),,
而与可以很容易进行比较得到:
,
所以;
(2)当a<-1或O1时,a>;
当a=时,a=.
【点评】(1)有时无理数比较大小,通过平方转化以后也无法进行比较,那么我们可以利用倒数关系比较;
(2)这道题实际上是互为倒数的两个数之间的比较大小,我们可以利用数轴进行比较,我们知道,0没有倒数,±
1的倒数等于它本身,这样数轴就被这3个数分成了4部分,下面就可以分类讨论每种情况.我们还可以利用函数图象来解决这个问题,把的值看成是关于a的反比例函数,把a的值看成是关于a的正比例函数,在坐标系中画出它们的图象,可以很直观的比较出它们的大小.
举一反三:
【变式】比较下列每组数的大小:
(1)和 (2)和
【答案】
(1)将其通分,转化成同分母分数比较大小,
,, ,
所以.
(2)
因为,
所以.
类型四、平方根的应用
5.已知:x ,y是实数,,若axy-3x=y,则实数a的值是_______.
【答案】.
【解析】,即
两个非负数相加和为0,则这两个非负数必定同时为0,
∴,(y-3)2=0, ∴ x=, y=3
又∵axy-3x=y, ∴ a=.
【点评】此题考查的是非负数的性质.
类型五、实数运算中的规律探索
6.细心观察图形,认真分析各式,然后解答问题
(1)请用含有n(n是正整数)的等式表示上述变化规律;
(2)推算出OA10的长;
(3)求出S12+ S22+ S32+…+ S102的值.
【答案与解析】
(1)由题意可知,图形满足勾股定理,
(2)因为OA1=,OA2=,OA3=…,
所以OA10=
(3)S12+ S22+ S32+…+ S102
=
=
=.
【点评】近几年各地的中考题中越来越多的出现了一类探究问题规律的题目,这些问题素材的选择、文字的表述、题型的设计不仅考察了数学的基础知识,基本技能,更重点考察了创新意识和能力,还考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力.
举一反三:
【变式】图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,第四行有8个,……你是否发现苹果的排列规律?猜猜看,第十行有______个苹果.
【答案】2(512).