- 435.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2014年中考数学二轮复习系列(二)常见数学模型在生活中的应用
一、中考要求
利用数学知识解决生活中的实际问题,是新课标的一个重要课程目标,是学生学习知识、形成技能和发展为能力的结果,也是学生具备了建模思想的重要标志。
二、知识结构图
构建数学模型 解决实际问题基本程序如下:
设未知数
三、解题步骤
1、阅读、审题:
要做到简缩问题,删掉次要语句,深入理解关键字句;为便于数据处理,最好运用表格(或图形)处理数据,便于寻找数量关系。
2、建模:
将问题简单化、符号化,尽量借鉴标准形式,建立数学关系式。
3、合理求解纯数学问题
4、解释并回答实际问题
中学阶段主要求解下面几类应用题,本文以2004年全国各地中考试题为例供同学们学习。
四、考点分析:
1. 方程模型的应用
基本步骤:设元、列方程、解方程。解应用题的关键是:寻找题目中的等量关系,尤其是从语言中挖掘等量关系。找等量关系实际上就是从实际问题到建立数学模型的一个过渡阶段。
例1.(2013•淮安)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?
分析:先直接设购买 这种服装 x件,根据服装总款1200元构建一个框架:
单件售价
×
件 数
1200
=
然后填充单件售价,即用含的代数式表示单件售价,可表示为[80﹣2(x﹣10)]元,件数为,把这两部分填入框架,即可得方程。
解:设购买了件这种服装,根据题意得
[80﹣2(x﹣10)]x=1200
解得:x1=20,x2=30
当=20时,单价为60>50,所以20不合题意舍去。=30时,单价为40<50,符合题意。
答:小丽购买了30件这种服装.
方法指导:构建框架,用未知数的代数式填充框架,最终建立方程模型。最值问题可建立函数模型。
即时检测1:(2013.北京)列方程或方程组解应用题:
某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.
2.方程不等式模型的综合应用
在解决方案型问题时,可由方程模型建立多个未知数之间的关系,最终通过代换消元,得到不等式中的整数解,进而得出几种方案。
例2(2013湖南益阳●19)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.
(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?
(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.解:
思路分析:(1)根据“‘益安’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式组成方程组,求出即可;
(2)利用“‘益安’车队需要一次运输沙石165吨以上”得出不等式的整数解,几个整数解就有几种方案,求出购买方案.
解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,
根据题意得: ,
解之得.
∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;
(2)设载重量为8吨的卡车增加了z辆,
依题意得:,
解之得:
∵且为整数,
∴0,1,2 ;
∴6,5,4.
∴车队共有3种购车方案:
①载重量为8吨的卡车不购买,10吨的卡车购买6辆;②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;
③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆.
【方法指导】设适当的未知数,根据问题中蕴含的数量关系,建立相应的方程、不等式模型,然后求解,在未知数的范围内找整数解,最后还要对所求得的解进行检验,如果选择最优方案,方案比较多时,还可运用构建一次函数模型,运用一次函数的性质讨论求解.
即时检测2:(2013湖北黄冈,21,8分)为了支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:
甲种货车
乙种货车
载货量(吨/辆)
45
30
租金(元/辆)
400
300
如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.
3.函数模型在最值问题中的应用
在最值问题中,如果题中没有设出自变量,最后让求最值时,可分析题中哪个量引起另一个的变化,可设这两个量分别为自变量和函数,建立函数关系式,注意自变量的范围,如果是一次函数的最值问题,一定要求自变量的取值范围,结合一次函数的增减性求最值;如果是二次函数的最值问题,利用配方法后,一定要看顶点横坐标是否在自变量的范围内,若不在,结合图像求解。
每月用气量
单价(元/m3)
不超出75m3的部分
2.5
超出75m3不超出125m3的部分
a
超出125m3的部分
a+0.25
例3(2013•徐州•27)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收 费价格如表所示:
(1)若甲用户3月份的用气量为60m3,则应缴费 元;
(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;
(3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?
思路分析:(1)根据单价×数量=总价就可以求出3月份应该缴纳的费用;
(2)结合统计表的数据)根据单价×数量=总价的关系建立方程就可以求出a值,再从0≤x≤75,75<x≤125和x>125运用待定系数法分别表示出y与x的函数关系式即可;
(3)设乙用户2月份用气xm3,则3月份用气(175-x)m3,分3种情况:x>125,175-x≤75时,75<x≤125,175-x≤75时,当75<x≤125,75<175-x≤125时分别建立方程求出其解就可以.
解:(1)由题意,得60×2.5=150(元);
(2)由题意,得a=(325-75×2.5)÷(125-75),
a=2.75,∴a+0.25=3,
设OA的解析式为y1=k1x,则有
2.5×75=75k1,∴k1=2.5,
∴线段OA的解析式为y1=2.5x(0≤x≤75);
设线段AB的解析式为y2=k2x+b,由图象,得
,解得:,
∴线段AB的解析式为:y2=2.75x-18.75(75<x≤125);
(385-325)÷3=20,故C(145,385),设射线BC的解析式为,由图象,得,解得:,
∴射线BC的解析式为y3=3x-50(x>125)
(3)设乙用户2月份用气xm3,则3月份用气(175-x)m3,
当x>125,175-x≤75时,
3x-50+2.5(175-x)=455,
解得:x=135,175-135=40,符合题意;
当75<x≤125,175-x≤75时,
2.75x-18.75+2.5(175-x)=455,
解得:x=145,不符合题意,舍去;
当75<x≤125,75<175-x≤125时,
2.75x-18.5+2.75(175-x)=455,此方程无解.
∴乙用户2、3月份的用气量各是135m3,40m3.
【方法指导】本题是一道一次函数的综合试题,构建框架:
单 价
×
数 量
总 价
=
然后用未知数的代数式填充框架;在用待定系数法求一次函数的解析式时,注意分段函数的运用,运用分类讨运论思想。
即时检测3:(2013湖北省十堰市,21)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:
类型 价格
进价(元/盏)
售价(元/盏)
A型
30
45
B型
50
70
(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
例4.如图,用长6米的铝合金型材做一个形状如图的矩形窗框,窗框的长、宽各为多少时,它的透光面积最大?最大面积是多少?
思路分析:这是一道最值问题。就需要构建函数模型,构建一个框架:
=
×
长
面积
宽
用自变量的代数式填充框架,由题意可知,长、宽的变化引起面积的变化,因此设透光面积为函数,建立函数关系式.
【方法指导】这类题目没有要求写出函数关系,但仍需设出自变量、函数,建立函数关系式,在自变量范围内确定最值。
即时检测4:(2013四川遂宁•25)如图,抛物线y=x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,).直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D.
(1)求抛物线y=x2+bx+c与直线y=kx的解析式;
(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;
(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为,点P的横坐标为x
求与x的函数关系式,并求出的最大值.
4.几何模型的应用
构建几何模型就是把实际问题中本质的东西抽象为几何图形(线段、直角三角形,等腰三角形、平行四边形、梯形等),利用几何图形的性质解决实际问题。
例5(2013陕西•20)一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度,如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC
方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m。已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m)
思路分析:解决此类问题的关键是从实际问题中抽象出几何模型,本题构建相似三角形模型,如果未知线段比较多,可再设出未知数,构建方程模型。应用相似的性质来将实际问题转化成数学问题来解决。
解:如图,设CD长为m ∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA
∴MA∥CD,BN∥CD,∴EC=CD=,∴△ABN∽△ACD ∴
即 解得
所以路灯高CD约为6.1米
【方法指导】在确定哪两个三角形相似时,通常采用“已知未知法 ”即已知线段和未知线段分别所在的三角形,当出现两个未知线段时,可设一个为未知数,另一个用这个未知数表示,此过程需学会代换或转化。
【即时检测5】(2013湖南益阳•18)如图7,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道,现决定从小岛架一座与观光小道垂直的小桥,小张在小道上测得如下数据:米,,.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)
(参考数据:,,,,,)
盘点收获
学过本专题后,我解此类题的基本策略是
课堂检测
(时间:45分钟 满分:100分)
一、选择题:(每小题4分,共20分)
1、(2013湖北黄冈·8)一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是( )
A. B. C. D.
2、 (2013潍坊·7)用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( ).
3、(2013四川巴中·5)在物理实验课上,小明用弹簧称将铁块A
悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是( )
A B C D
4、(2013山西,10)如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同
一水平面上),为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为( )
A.100m B.50m
C.50m D.m
5、(2013贵州安顺,6,3分)如图,有两颗树,一颗高10米, 另 一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )A.8米 B.10米 C.12米 D、14米
第6题图
二、填空题(每小题4分,共20分)6、(2013•东营·15)某校研究性学习小组测量学校旗杆 AB的高度, 如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗 杆AB的高度为 米。
7、(2013四川成都·14)如图,某山坡的坡面AB = 200 米,坡角∠BAC=30°,则该山坡的高BC的长为______米。
A
B
C
30°
第7题图
8、2013•衢州)某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种 棵橘子树,橘子总个数最多.
9、(2013山西·18)如图是我省某地一座抛物线形拱桥, 桥拱在竖直平面内,与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9m,AB=36m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为_____m.
第9题图
第10题图
10、2013·济宁·11)如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm则屏幕上图形的高度为 cm.
三、解答题(共计60分)
11.(2013白银·22)(8分)某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值.
12.(2013四川绵阳·23)(12分) “低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆。
(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?
(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆。根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍。假设所进车辆全部售完,为使利润最大,该商城应如何进货?
14 .(2013湖南邵阳·24)(8分)雅安地震后,政府为安置灾民,从某厂调拔了用于搭建板房的板材5600m3和铝材2210m3,计划用这些材料在某安置点搭建甲、 乙两种规格的板房共100间.若搭建一间甲型 板房或一间乙型 板房所需板 材和铝材的数量如下表所示:
板房规格
板材数量(m3)
铝材数量(m3)
甲型
40
30
乙型
60
20
请你根据以上信息,设计出甲、乙两种板房的搭建方案.
15.(2013•东营·22,10分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买 2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
分析:(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:1台电脑+2台电子白板凳3.5万元,2台电脑+1台电子白板凳2.5万元,列方程组即 可.
(2)设购进电脑x台,电子白板有(30-x)台,然后根据题目中的不等关系列不等式组解答.
16.(2013湖北孝感·22)(12分)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.
(1)求y与x满足的函数关系式(不要求写出x的取值范围);
(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?
参考答案
即时检测答案:1、2.5m2
2、方案一,租甲车4辆乙车2辆
3、解:设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,
解得x=75,
所以,100﹣75=25,
答:应购进A型台灯75盏,B型台灯25盏;
(2)设商场销售完这批台灯可获利y元,
则y=(45﹣30)x+(75﹣50)(100﹣x),
=15x+2000﹣20x,
=﹣5x+2000,
∵B型台灯的进货数量不超过A型台灯数量的3倍,
∴100﹣x≤3x,
∴x≥25,
∵k=﹣5<0,
∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)
答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
4、解:(1)∵y=x2+bx+c经过点A(2,0) 和B(0,)
∴由此得 ,
解得.
∴抛物线的解析式是y=x2
∵直线y=kx﹣经过点A(2,0)
∴2k﹣=0,
解得:k=,
∴直线的解析式是 y=x﹣,
(2)设P的坐标是(x,x2),则M的坐标是(x,x﹣)
∴PM=(x2)﹣(x﹣)=x2﹣x+4,
解方程 得:,,
∵点D在第三象限,则点D的坐标是(﹣8,﹣7),由y=x﹣中,得点C的坐标是(0,﹣),
∴CE=﹣﹣(﹣7)=6,
由于PM∥y轴,要使四边形PMEC是平行四边形,必有PM=CE,即x2﹣x+4=6
解这个方程得:x1=﹣2,x2=﹣4,
符合﹣8<x<2,
当x=﹣2时,y=3,
当x=﹣4时,y=,
因此,直线AD上方的抛物线上存在这样的点P,使四边形PMEC是平行四边形,点P的坐标是(﹣2,3)和(﹣4,1.5);
(3)在Rt△CDE中,DE=8,CE=6 由勾股定理得:DC=
∴△CDE的周长是24,
∵PM∥y轴,
∵∠PMN=∠DCE,
∵∠PNM=∠DEC,
∴△PMN∽△CDE,
∴=,即=,化简整理得:与x的函数关系式是:=﹣x2﹣x+,
=﹣x2﹣x+=﹣(x+3)2+15,
∵﹣<0,
∴有最大值,当x=﹣3时,的最大值是15.
5、解:设米,
∵,
∴.
在Rt△PAD中,,
∴.
在Rt△PBD中,,
∴.
又AB=80.0,
∴.
∴,即.
∴.
答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.
课堂检测答案:
一、1.C ;2.C;3.C;4.A;5.B
二、6、提示:根据题意,BD=CD=9米,BC=
∴AB=(米)
7、100
8、10 提示:根据题意设多种x棵树,就可求出每棵树的产量,然后求出总产量y与x之间的关系式,建立函数模型,进而求出x=﹣时,
y最大=10
9、48
10、18
三、解答题:
11. 解:∵在Rt△ADB中,∠BDA=45°,AB=3米,
∴DA=3米,
在Rt△ADC中,∠CDA=60°,
∴tan60°=,
∴CA=3.
∴BC=CA﹣BA=(3﹣3)米.
答:路况显示牌BC是(3﹣3)米
12解:(1)设前4个月自行车销量的月平均增长率为x ,
根据题意列方程:64(1+x)2 =100 ,
解得x=-225%(不合题意,舍去), x= 25%
100×(1+25%)=125(辆) 答:该商城4月份卖出125辆自行车。
(2)设进B型车x辆,则进A型车辆,
根据题意得不等式组 2x≤≤2.8x ,
解得 12.5≤x≤15,自行车辆数为整数,所以13≤x≤15,
销售利润W=(700-500)×+(1300-1000)x .
整理得:W=-100x+12000, ∵ W随着x的增大而减小,
∴ 当x=13时,销售利润W有最大值,
此时,=34,
所以该商城应进入A型车34辆,B型车13辆
13. 【提示】构建框架:房款=人均住房面积×家庭人口数×单价.而单价与人均住房面积有关.
解:(1)三口之家应缴购房款为0.3×90+0.5×30=42(万元).
(2)①当0≤x≤30时,y=0.3×3x=0.9x;
②当30<x≤m时,y=0.9×30+0.5×3×(x-30)=1.5x-18;
③当x>m时,y=1.5m-18+0.7×3×(x-m)=2.1x-18-0.6m.
y= (45≤m≤60)
(3)①当50≤m≤60时,y=1.5×50-18=57(舍去);
②当45≤m<50时,y=2.1×50-0.6m-18=87-0.6m.
∵57<87-0.6m≤60,∴45≤m<50.
综合①、②得45≤m<50
14.解:设搭建甲种板房x间,则搭建乙种板房(100 –x)间.
根据题意,得.
解这个不等式组,得20≤x≤21.
因为x是整数,所以x=20,或x=21.所以有两种方案:
方案1甲种板房搭建20间,乙种板房搭建80间,
方案2甲种板房搭建21间,乙种板房搭建79间.
15. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:
…………………………3分
解得:…………………………4分
答:每台电脑0.5万元,每台电子白板1.5万元. ……………5分
(2)设需购进电脑a台,则购进电子白板(30-a)台,
则…………………………6分
解得:,即a=15,16,17.…………………………7分
故共有三种方案:
方案一:购进电脑15台,电子白板15台.总费用为 万元;
方案二:购进电脑16台,电子白板14台.总费用为万元
方案三:购进电脑17台,电子白板13台.总费用为28万元
所以方案三费用最低。
16、28元。