- 510.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第二十二讲梯形
【基础知识回顾】
一、 梯形的定义、分类和面积:
1、定义:一组对边平行,而另一组对边 的四边形,叫做梯形。其中,平行的两边叫做 ,不平行的两边叫做 ,两底间的距离叫做梯形的 。
直角梯形:一腰与底 的梯形叫做直角梯形
一般梯形
等腰梯形:两腰 的梯形叫做等腰梯形
特殊梯形
2、分类:梯形
3、梯形的面积:S梯形= (上底+下底)×高
【名师提醒:要判定一个四边形是梯形,除了要证明它有一组对边 外,还需注明另一组对边不平行或平行的这组对边不相等】
二、等腰梯形的性质和判定:
1、性质:⑴等腰梯形的两腰相等, 相等
⑵等腰梯形的对角线
⑶等腰梯形是 对称图形
2、判定: ⑴用定义:先证明四边形是梯形,再证明其两腰相等
⑵同一底上两个角 的梯形是等腰梯形
⑶对角线 的梯形是等腰梯形
【名师提醒:1、梯形的性质和判定中“同一底上的两个角相等”不能说成“两底角相等” 2、等腰梯形所有的判定方法都必须先证它是梯形 3、解决梯 形 问 题 的 基 本思 路 是 通过做辅助线将梯形转化为 形或 形常见的辅助线作法有
要注意根据题目的特点灵活选用辅助线】
【重点考点例析】
考点一:梯形的基本概念和性质
例1 (2013•广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
A.2 B.2 C. D.
思路分析:先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tanB的值即可计算.
解:∵CA是∠BCD的平分线,
∴∠DCA=∠ACB,
又∵AD∥BC,
∴∠ACB=∠CAD,
∴∠DAC=∠DCA,
∴DA=DC,
如图,过点D作DE∥AB,交AC于点F,交BC于点E,
∵AB⊥AC,
∴DE⊥AC(等腰三角形三线合一的性质),
∴点F是AC中点,
∴AF=CF,
∴EF是△CAB的中位线,
∴EF=AB=2,
∵=1,
∴EF=DF=2,
在Rt△ADF中,AF=,
则AC=2AF=8,
tanB=.
故选B.
点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F是AC中点,难度较大.
对应训练
1.(2013•宁波)如图,梯形ABCD中,AD∥BC,AB=,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为( )
A. B. C. D.2
1.B
考点二:等腰梯形的性质
例2 (2013•柳州)如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC沿BC翻折得到△EBC.
(1)四边形ABEC一定是什么四边形?
(2)证明你在(1)中所得出的结论.
思路分析:(1)首先观察图形,然后由题意可得四边形ABEC一定是平行四边形;
(2)由四边形ABCD为等腰梯形,AD∥BC,可得AB=DC,AC=BD,又由在平面内将△DBC沿BC翻折得到△EBC,可得EC=DC,DB=BE,继而可得:EC=AB,BE=AC,则可证得四边形ABEC是平行四边形.
解答:(1)解:四边形ABEC一定是平行四边形;
(2)证明:∵四边形ABCD为等腰梯形,AD∥BC,
∴AB=DC,AC=BD,
由折叠的性质可得:EC=DC,DB=BE,
∴EC=AB,BE=AC,
∴四边形ABEC是平行四边形.
点评:此题考查了等腰梯形的性质、折叠的性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.
对应训练
2.(2013•杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.
求证:△GAB是等腰三角形.
2.证明:∵在等腰梯形中ABCD中,AD=BC,
∴∠D=∠C,∠DAB=∠CBA,
在△ADE和△BCF中,
,
∴△ADE≌△BCF(SAS),
∴∠DAE=∠CBF,
∴∠GAB=∠GBA,
∴GA=GB,
即△GAB为等腰三角形.
考点三:等腰梯形的判定
例3 (2013•钦州)如图,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求证:梯形ABCD是等腰梯形.
思路分析:由AB∥DE,∠DEC=∠C,易证得∠B=∠C,又由同一底上两个角相等的梯形是等腰梯形,即可证得结论.
证明:∵AB∥DE,
∴∠DEC=∠B,
∵∠DEC=∠C,
∴∠B=∠C,
∴梯形ABCD是等腰梯形.
点评:此题考查了等腰梯形的判定.此题比较简单,注意掌握同一底上两个角相等的梯形是等腰梯形定理的应用,注意数形结合思想的应用.
对应训练
3.(2013•上海)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是( )
A.∠BDC=∠BCD B.∠ABC=∠DAB C.∠ADB=∠DAC D.∠AOB=∠BOC
3.C
考点四:梯形的综合应用
例4 34.(2013•扬州)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.
(1)求y与x的函数关系式;
(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;
(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.
思路分析:(1)证明△ABP∽△PCE,利用比例线段关系求出y与x的函数关系式;
(2)根据(1)中求出的y与x的关系式,利用二次函数性质,求出其最大值,列不等式确定m的取值范围;
(3)根据翻折的性质及已知条件,构造直角三角形,利用勾股定理求出BP的长度.解答中提供了三种解法,可认真体会.
解:(1)∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°,
∴∠APB=∠CEP,又∵∠B=∠C=90°,
∴△ABP∽△PCE,
∴,即,
∴y=-x2+x.
(2)∵y=-x2+x=-(x-)2+,
∴当x=时,y取得最大值,最大值为.
∵点P在线段BC上运动时,点E总在线段CD上,
∴≤1,解得m≤2.
∴m的取值范围为:0<m≤2.
(3)由折叠可知,PG=PC,EG=EC,∠GPE=∠CPE,
又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°,
∴∠APG=∠APB.
∵∠BAG=90°,∴AG∥BC,
∴∠GAP=∠APB,
∴∠GAP=∠APG,
∴AG=PG=PC.
解法一:如解答图所示,分别延长CE、AG,交于点H,
则易知ABCH为矩形,HE=CH-CE=2-y,GH=AH-AG=4-(4-x)=x,
在Rt△GHE中,由勾股定理得:GH2+HE2=GH2,
即:x2+(2-y)2=y2,化简得:x2-4y+4=0 ①
由(1)可知,y=-x2+x,这里m=4,∴y=-x2+2x,
代入①式整理得:x2-8x+4=0,解得:x=或x=2,
∴BP的长为或2.
解法二:如解答图所示,连接GC.
∵AG∥PC,AG=PC,
∴四边形APCG为平行四边形,∴AP=CG.
易证△ABP≌GNC,∴CN=BP=x.
过点G作GN⊥PC于点N,则GH=2,PN=PC-CN=4-2x.
在Rt△GPN中,由勾股定理得:PN2+GN2=PG2,
即:(4-2x)2+22=(4-x)2,
整理得:x2-8x+4=0,解得:x=或x=2,
∴BP的长为或2.
解法三:过点A作AK⊥PG于点K,
∵∠APB=∠APG,
∴AK=AB.
易证△APB≌△APK,
∴PK=BP=x,
∴GK=PG-PK=4-2x.
在Rt△AGK中,由勾股定理得:GK2+AK2=AG2,
即:(4-2x)2+22=(4-x)2,
整理得:x2-8x+4=0,
解得:x=或x=2,
∴BP的长为或2.
点评:
本题是代数几何综合题,考查了全等三角形、相似三角形、勾股定理、梯形、矩形、折叠、函数关系式、二次函数最值等知识点,所涉及考点众多,有一定的难度.注意第(2)问中求m取值范围时二次函数性质的应用,以及第(3)问中构造直角三角形的方法.
对应训练
4.(2013•青岛模拟)如图,在等腰梯形ABCD中,AB=DC=5cm,AD=4cm,BC=10cm,点E从点C出发,以1cm/s的速度沿CB向点B移动,点F从点B出发以2cm/s的速度沿BA方向向点A移动,当点F到达点A时,点E停止运动;设运动的时间为t(s) (0<t<2.5).问:
(1)当t为何值时,EF平分等腰梯形ABCD的周长?
(2)若△BFE的面积为S(cm2),求S与t的函数关系式;
(3)是否存在某一时刻t,使五边形AFECD的面积与△BFE的面积之比是3:2?若存在求出t的值;若不存在,说明理由.
(4)在点E、F运动的过程中,若线段EF=cm,此时EF能否垂直平分AB?
4.解:(1)∵EF平分等腰梯形ABCD的周长,
∴BE+BF=(AD+BC+CD+AB)=12,
∴10-t+2t=12,
t=2;
答:当t为2s时,EF平分等腰梯形ABCD的周长;
(2)如图,过A作AN⊥BC于N,过F作FG⊥BC于G,
则BN=(BC-AD)=×(10-4)=3(cm),
∵AN⊥BC,FG⊥BC,
∴FG∥AN,
△ABN∽△FGB,
∴,
∴,
FG=t,
∴S△BEF=×BE×FG=(10-t)•t,
S=-t2
+8t;
(3)假设存在某一时刻t,使五边形AFECD的面积与△BFE的面积之比是3:2,
S五边形AFECD=S梯形ABCD-S△BFE=×(4+10)×4-(-t2+8t)=28+t2-8t,
即2(28+t2-8t)=3(-t2+8t),
解得:t=5+(大于2.5,舍去),t=5-;
即存在某一时刻t,使五边形AFECD的面积与△BFE的面积之比是3:2,t的值是(5-)s;
(4)假设存在EF垂直平分AB,
则△ABN∽△BEF,
,
,
EF=≠,
即线段EF=cm,此时EF不能垂直平分AB.
【聚焦山东中考】
1.(2013•烟台)如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD= .
1.
2.(2013•临沂)如图,等腰梯形ABCD中,AD∥BC,DE⊥BC,BD⊥DC,垂足分别为E,D,DE=3,BD=5,则腰长AB= .
2.
3.(2013•滨州模拟)我们知道“连接三角形两边中点的线段叫三角形的中位线”,“三角形的中位线平行于三角形的第三边,且等于第三边的一半”.类似的,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图,在梯形ABCD中,AD∥BC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位线.通过观察、测量,猜想EF和AD、BC有怎样的位置和数量关系?并证明你的结论.
3.解:结论为:EF∥AD∥BC,EF=(AD+BC).理由如下:
连接AF并延长交BC于点G.
∵AD∥BC,
∴∠DAF=∠G,
在△ADF和△GCF中,
,
∴△ADF≌△GCF(AAS),
∴AF=FG,AD=CG.
又∵AE=EB,
∴EF∥BG,EF=BG,
即EF∥AD∥BC,EF=(AD+BC).
【备考真题过关】
一、选择题
1.(2013•绵阳)下列说法正确的是( )
A.对角线相等且互相垂直的四边形是菱形
B.对角线互相垂直的梯形是等腰梯形
C.对角线互相垂直的四边形是平行四边形
D.对角线相等且互相平分的四边形是矩形
1.D
2.(2013•十堰)如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,则下底BC的长为( )
A.8 B.9 C.10 D.11
2.A
二、填空题
3.(2013•扬州)如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为 30
.
3.30
4.(2013•盘锦)如图,等腰梯形ABCD,AD∥BC,BD平分∠ABC,∠A=120°.若梯形的周长为10,则AD的长为 2
.
4.2
5.(2013•六盘水)如图,梯形ABCD中,AD∥BC,AD=4,AB=5,BC=10,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于 19
.
5.19
6.(2013•长沙)如图,在梯形ABCD中,AD∥BC,∠B=50°,∠C=80°,AE∥CD交BC于点E,若AD=2,BC=5,则边CD的长是 3
.
6.3
7.(2013•曲靖)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,则CD= .
7.
8.(2013•南京)如图,在梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于P.已知A(2,3),B(1,1),D(4,3),则点P的坐标为 .
8.( 33
, )
三、解答题
9.(2013•玉林)如图,在直角梯形ABCD中,AD∥BC,AD⊥DC,点A关于对角线BD的对称点F刚好落在腰DC上,连接AF交BD于点E,AF的延长线与BC的延长线交于点G,M,N分别是BG,DF的中点.
(1)求证:四边形EMCN是矩形;
(2)若AD=2,S梯形ABCD= ,求矩形EMCN的长和宽.
9.(1)证明:∵点A、F关于BD对称,
∴AD=DF,DE⊥
AF,
又∵AD⊥DC,
∴△ADF、△DEF是等腰直角三角形,
∴∠DAF=∠EDF=45°,
∵AD∥BC,
∴∠G=∠GAD=45°,
∴△BGE是等腰直角三角形,
∵M,N分别是BG,DF的中点,
∴EM⊥BC,EN⊥CD,
又∵AD∥BC,AD⊥DC,
∴BC⊥CD,
∴四边形EMCN是矩形;
(2)解:由(1)可知,∠EDF=45°,BC⊥CD,
∴△BCD是等腰直角三角形,
∴BC=CD,
∴S梯形ABCD=(AD+BC)•CD=(2+CD)•CD=,
即CD2+2CD-15=0,
解得CD=3,CD=-5(舍去),
∵△ADF、△DEF是等腰直角三角形,
∴DF=AD=2,
∵N是DF的中点,
∴EN=DN=DF=×2=1,
∴CN=CD-DN=3-1=2,
∴矩形EMCN的长和宽分别为2,1.
10.(2013•深圳)如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,廷长BC到E,使得CE=AD,连接DE.
(1)求证:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.
10.(1)证明:∵AD∥BC,CE=AD,
∴四边形ACED是平行四边形,
∴AC=DE,
∵四边形ABCD是等腰梯形,AD∥BC,AB=DC,
∴AC=BD,
∴BD=DE.
(2)解:过点D作DF⊥BC于点F,
∵四边形ACED是平行四边形,
∴CE=AD=3,AC∥DE,
∵AC⊥BD,
∴BD⊥DE,
∵BD=DE,
∴S△BDE=BD•DE=BD2=BE•DF=(BC+CE)•DF=(BC+AD)•DF=S梯形ABCD=16,
∴BD=4,
∴BE=BD=8,
∴DF=BF=EF=BE=4,
∴CF=EF-CE=1,
∴AB=CD=.
11.(2013•安溪县质检)已知等腰梯形中,AB=DC=2,AD∥BC,AD=3,腰与底相交所成的锐角为60°,动点P在线段BC上运动( 点P不与B、C点重合),并且∠APQ=60°,PQ交射线CD于点Q,若CQ=y,BP=x,
(1)求下底BC的长.
(2)求y与x的函数解析式,并指出当点P运动到何位置时,线段CQ最长,最大值为多少?
(3)在(2)的条件下,当CQ最长时,PQ与AD交于点E,求QE的长.
11.解:(1)如图1,过点D作DE∥AB,交BC于E,
∵AD∥BC,
∴四边形ABED是平行四边形,
∴BE=AD=3,DE=AB=DC=2,
∵DE∥AB,
∴∠DEC=∠B=60°,
∴△DEC为等边三角形,
∴EC=DC=2,
∴BC=BE+EC=3+2=5;
(2)如图2,在△CPQ与△BAP中,
∵,
∴△CPQ∽△BAP,
∴CQ:BP=CP:BA,即y:x=(5-x):2,
∴y=-x2+x,
当x=,即当点P运动到BC中点时,线段CQ最长,
此时最大值为;
(3)如图3,
在(2)的条件下,当CQ最长时,BP=CP=,CQ=,
∴QD=CQ-CD=-2=.
∵DE∥CP,
∴△QDE∽△QCP,
∴QE:QP=DE:CP=QD:QC,
即QE:QP=DE:=:=9:25,
∴可设QE=9k,QP=25k,且DE=,
∴PE=QP-QE=16k,AE=AD-DE=3-=.
在△DEQ与△PEA中,
∵,
∴△DEQ∽△PEA,
∴DE:PE=EQ:EA,
∴:16k=9k:,
解得k=,
∴QE=9k=.