中考数学压轴题精选二 30页

  • 855.40 KB
  • 2021-05-10 发布

中考数学压轴题精选二

  • 30页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2010全国各地中考数学压轴题精选(一)‎ ‎(附答案)‎ ‎(绵阳、桂林、长沙、嘉兴、鸡西、昆明、济南、凉山、中山、宁德、德州、河北、丽水、深圳、成都、广安、珠海、江西、武汉、黄石、山西、宜宾、徐州、潜江、荆州、大连、厦门、随州、哈尔滨、河南、兰州、潼南、金华、盐城、淮安、台州、益阳、烟台、苏州、丹东)‎ ‎1.(8分)如图,⊙O的圆心在Rt△ABC的直角 边AC上,⊙O经过C、D两点,与斜边AB交于 点E,连结BO、ED,有BO∥ED,作弦EF⊥AC 于G,连结DF.‎ ‎ (1)求证:AB为⊙O的切线;‎ ‎ (2)若⊙O的半径为5,sin∠DFE=,‎ 求EF的长.‎ ‎2.(10分)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价(万元)之间满足关系式,月产量x(套)与生产总成本(万元)存在如图所示的函数关系.‎ ‎ (1)直接写出与x之间的函数关系式;‎ ‎ (2)求月产量x的范围;‎ ‎ (3)当月产量x(套)为多少时,‎ 这种设备的利润W(万元)最大?最大利润是多少?‎ ‎3.(12分)如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.‎ ‎(1)直接写出D点的坐标;‎ ‎(2)设OE=x,AF=y,试确定y与x之间的函数关系;‎ ‎(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△,求△与五边形OEFBC重叠部分的面积.‎ ‎4.(本题满分l2分)‎ 将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(–3,0).‎ ‎(1)求该抛物线的解析式;‎ ‎(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;‎ ‎24题图 ‎(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.‎ ‎5.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连结PA、PB、PC、PD.‎ ‎(1)当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并证明;‎ ‎(2)若cos∠PCB=,求PA的长.‎ ‎6.如图,平面直角坐标系中有一矩形ABCD(O为原点),点A、C分别在x轴、‎ y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.‎ ‎(1)直接写出∠ABE、∠CBD的度数,并求折痕BD所在直线的函数解析式;‎ ‎(2)过F点作FG⊥x轴,垂足为G,FG的中点为H,若抛物线经过B、H、D三点,求抛物线的函数解析式;‎ ‎(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PMMN成立的x的取值范围。‎ ‎7.(11分)某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图a,A(10,5),B(130,5),C(135,0).‎ ‎  (1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;‎ ‎(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间);‎ ‎(3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式;‎ ‎(4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路程与此时S的数量关系.‎ ‎ 图a                    图b ‎8.(15分)已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).‎ ‎(1)求字母a,b,c的值;‎ ‎(2)在直线x=1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;‎ ‎(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由.‎ ‎9.(本题10分)‎ ‎ 已知:在△ABC中AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.‎ ‎ (1)如图1,当∠ABC=45°时,求证:AE=MD;‎ ‎ (2)如图2,当∠ABC=60°时,则线段AE、MD之间的数量关系为: 。‎ ‎(3)在(2)的条件下延长BM到P,使MP=BM,连接CP,若AB=7,AE=,‎ 求tan∠ACP的值.‎ ‎10、.(11分)在平面直角坐标系中,已知抛物线经过A,B,C三点.‎ ‎(1)求抛物线的解析式;‎ ‎(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.‎ ‎(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.‎ ‎11.(本题满分10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.‎ ‎ (1)求证:PC是⊙O的切线;‎ ‎ (2)求证:BC=AB;‎ ‎ (3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.‎ 第26题图 ‎ ‎12.(本题满分10分)已知平行四边形ABCD中,对角线AC和BD相交于点O,AC=10, ‎ BD=8.‎ ‎ (1)若AC⊥BD,试求四边形ABCD的面积 ;‎ ‎(2)若AC与BD的夹角∠AOD=,求四边形ABCD的面积;‎ ‎ (3)试讨论:若把题目中“平行四边形ABCD”改为“四边形ABCD”,且∠AOD=‎ AC=,BD=,试求四边形ABCD的面积(用含,,的代数式表示).‎ 第 27题图 ‎13.(本题满分11分)如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)‎ ‎(1)当x取何值时,该抛物线的最大值是多少?‎ ‎(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示). ‎ ‎① 当时,判断点P是否在直线ME上,并说明理由;‎ ‎② 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由.‎ 图1 第28题图 图2‎ ‎14.(12分)如图, 已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).‎ ‎(1)求抛物线的解析式;‎ ‎(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最大时,求点D的坐标;‎ ‎(3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.‎ ‎15. (本题10分)‎ 已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.‎ y P Q M N O x ‎1‎ ‎2‎ ‎-1‎ ‎-2‎ ‎-3‎ ‎-3‎ ‎-2‎ ‎-1‎ ‎1‎ ‎2‎ ‎3‎ ‎(第23题图)‎ ‎(1)如图所示,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ‎1M1N1,并写出点M1的坐标; ‎ ‎(温馨提示:作图时,别忘 了用黑色字迹的钢笔或签字 笔描黑喔!)‎ M1的坐标是 ▲ ‎ ‎ (2) 请你通过改变P点坐标,对直线M‎1 M的解析式y﹦kx+b进行探究可得 k﹦ ▲ , 若点P的坐标为(m,0)时,则b﹦ ▲ ;‎ ‎ (3) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.24. (本题12分)‎ ‎ 如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为 ‎(3,0)和(0,3).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,‎ BA上运动的 面四民﹒数学兴趣小组对捐款情况进行了抽样调查,速度分别为1,,2 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开 始以 (长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,‎ AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线 AO-OB-BA运动一周时,直线l和动点P同时停止运动.‎ ‎ 请解答下列问题:‎ ‎ (1)过A,B两点的直线解析式是 ▲ ;‎ ‎(2)当t﹦4时,点P的坐标为 ▲ ;当t ﹦ ▲ ,点P与点E重合; ‎ ‎ (3)① 作点P关于直线EF的对称点P′. 在运动过程中,若形成的四边形PEP′F为 ‎ 菱形,则t的值是多少?‎ ‎② 当t﹦2时,是否存在着点Q,使得△FEQ ∽△BEP ?若存在, 求出点Q的坐标;‎ B F A P E O x y ‎(第24题图)‎ 若不存在,请说明理由.‎ ‎16 (本题满分12分)已知:函数y=ax2+x+1的图象与x轴只有一个公共点.‎ ‎(1)求这个函数关系式;‎ ‎(2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P 为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;‎ ‎(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上,若在抛物线上,求出M点的坐标;若不在,请说明理由.‎ A x y O B ‎(第24题)‎ H ‎17.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.‎ ‎(1)求证:△DHQ∽△ABC;‎ ‎(2)求y关于x的函数解析式并求y的最大值;‎ ‎(3)当x为何值时,△HDE为等腰三角形?‎ ‎ ‎ ‎18.如图9,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).‎ ‎(1)求经过A、B、C三点的抛物线的解析式;‎ ‎(2)过C点作CD平行于轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;‎ ‎(3)若抛物线的顶点为P,连结PC、PD,判断四边形CEDP的形状,并说明理由.‎ ‎19、(本题满分14分)‎ 如图,已知抛物线y=x2+bx‎-3a过点A(1,0),B(0,-3),与x轴交于另一点C。‎ ‎(1)求抛物线的解析式;‎ ‎(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;‎ ‎(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由。‎ ‎20.(本题满分9分)如图,以A为顶点的抛物线与y轴交于点B.已知A、B两点的坐标分别为(3,0)、(0,4).‎ ‎ (1)求抛物线的解析式;‎ ‎ (2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;‎ ‎ (3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是 否总成立?请说明理由.‎ ‎21.如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时, △DMN也随之整体移动) .‎ ‎ (1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;‎ ‎ (2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;‎ ‎(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由. ‎ 图①‎ 图②‎ 图③‎ 第25题图 A ‎·‎ B C D E F ‎·‎ ‎·‎ ‎·‎ ‎22.如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).‎ ‎(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);‎ ‎(2)求出过A,B,C三点的抛物线的表达式; ‎ ‎(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;‎ ‎ (4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.‎ 第26题图 ‎1.(1)证明:连结OE ‎ ∵ED∥OB ‎∴∠1=∠2,∠3=∠OED,‎ 又OE=OD ‎∴∠2=∠OED ‎∴∠1=∠3 (1分)‎ 又OB=OB OE= OC ‎∴△BCO≌△BEO(SAS) (2分)‎ ‎∴∠BEO=∠BCO=90° 即OE⊥AB ‎∴AB是⊙O切线. (4分)‎ ‎(2)解:∵∠F=∠4,CD=2·OC=10;由于CD为⊙O的直径,∴在Rt△CDE中有:‎ ‎ ED=CD·sin∠4=CD·sin∠DFE= (5分)‎ ‎ ∴ (6分)‎ 在Rt△CEG中,‎ ‎∴EG= (7分)‎ 根据垂径定理得: (8分)‎ ‎2.解:(1) (2分)‎ ‎(2)依题意得: (4分)‎ 解得:25≤x≤40 (6分)‎ ‎(3)∵‎ ‎∴ (8分)‎ 而25<35<40, ∴当x=35时,‎ 即,月产量为35件时,利润最大,最大利润是1950万元.         (10分)‎ ‎3.解:(1)D点的坐标是. (2分)‎ ‎(2)连结OD,如图(1),由结论(1)知:D在∠COA的平分线上,则 ‎∠DOE=∠COD=45°,又在梯形DOAB中,∠BAO=45°,∴OD=AB=3‎ 由三角形外角定理得:∠1=∠DEA-45°,又∠2=∠DEA-45°‎ ‎∴∠1=∠2, ∴△ODE∽△AEF (4分)‎ ‎∴,即:‎ ‎∴y与x的解析式为:‎ ‎ (6分)‎ ‎(3)当△AEF为等腰三角形时,存在EF=AF或EF=AE或AF=AE共3种情况.‎ ‎①当EF=AF时,如图(2).∠FAE=∠FEA=∠DEF=45°,‎ ‎∴△AEF为等腰直角三角形.D在A’E上(A’E⊥OA),‎ B在A’F上(A’F⊥EF)‎ ‎∴△A’EF与五边形OEFBC重叠的面积为 四边形EFBD的面积.‎ ‎∵‎ ‎∴‎ ‎∴‎ ‎∴(也可用) (8分)‎ ‎ ‎ ‎②当EF=AE时,如图(3),此时△A’EF与五边形OEFBC重叠部分面积为△A’EF面积.‎ ‎∠DEF=∠EFA=45°, DE∥AB , 又DB∥EA ‎∴四边形DEAB是平行四边形 ‎∴AE=DB=‎ ‎∴‎ ‎ (10分)‎ ‎③当AF=AE时,如图(4),四边形AEA’F为菱形且△A’EF在五边形OEFBC内.‎ ‎ ∴此时△A’EF与五边形OEFBC重叠部分面积为△A’EF面积.‎ ‎ 由(2)知△ODE∽△AEF,则OD=OE=3‎ ‎ ∴AE=AF=OA-OE=‎ ‎ 过F作FH⊥AE于H,则 ‎∴‎ 综上所述,△A’EF与五边形OEFBC重叠部分的面积为或1或 (12分)‎ ‎4.解:(1)如图,∵抛物线y=ax2+bx+c(a ≠ 0)的图象经过点A(0,6),‎ ‎∴c=6.…………………………………………1分 ‎∵抛物线的图象又经过点(–3,0)和(6,0),‎ ‎∴ ………………………………2分 解之,得 …………………………3分 ‎ 故此抛物线的解析式为:y= – x2+x+6…………4分 ‎ (2)设点P的坐标为(m,0),‎ 则PC=6–m,S△ABC = BC·AO = ×9×6=27.……………5分 ‎∵PE∥AB,‎ ‎∴△CEP∽△CAB.…………………………………………6分 ‎ ∴ = ()2,即 = ( ) 2‎ ‎ ∴S△CEP = (6–m)2.…………………………………………………7分 ‎ ∵S△APC = PC·AO = (6–m)´6=3 (6–m)‎ ‎∴S△APE = S△APC–S△CEP =3 (6–m) – (6–m)2 = – (m– )2+.‎ 当m = 时,S△APE有最大面积为;此时,点P的坐标为(,0).………8分 ‎(3)如图,过G作GH⊥BC于点H,设点G的坐标为G(a,b),………………9分 连接AG、GC,‎ ‎ ∵S梯形AOHG = a (b+6),‎ ‎ S△CHG = (6– a)b ‎ ∴S四边形AOCG = a (b+6) + (6– a)b=3(a+b).……………………10分 ‎ ∵S△AGC = S四边形AOCG –S△AOC ‎ ∴ =3(a+b)–18.……………11分 ‎∵点G(a,b)在抛物线y= – x2+x+6的图象上,‎ ‎ ∴b= – a2+a+6.‎ ‎ ∴ = 3(a – a2+a+6)–18‎ ‎ 化简,得‎4a2–‎24a+27=0‎ ‎ 解之,得a1= ,a2= 故点G的坐标为(,)或(,). ……………………………………12分 ‎6、 解:(1)当BD=AC=4时,△PAD是以AD为底边的等腰三角形 ‎∵P是优弧BAC的中点 ∴弧PB=弧PC ‎∴PB=PC ‎∵BD=AC=4 ∠PBD=∠PCA ‎∴△PBD≌△PCA ‎∴PA=PD 即△PAD是以AD为底边的等腰三角形 ‎(2)由(1)可知,当BD=4时,PD=PA,AD=AB-BD=6-4=2‎ 过点P作PE⊥AD于E,则AE=AD=1‎ ‎∵∠PCB=∠PAD ‎∴cos∠PAD=cos∠PCB=‎ ‎∴PA=‎ 解:(1)∠ABE=∠CBD=30° ‎ 在△ABE中,AB=6‎ BC=BE=‎ CD=BCtan30°=4‎ ‎∴OD=OC-CD=2‎ ‎∴B(,6) D(0,2)‎ 设BD所在直线的函数解析式是y=kx+b ‎ ∴ ‎ 所以BD所在直线的函数解析式是 ‎(2)∵EF=EA=ABtan30°= ∠FEG=180°-∠FEB-∠AEB=60°‎ 又∵FG⊥OA ‎ ‎∴FG=EFsin60°=3 GE=EFcos60°= OG=OA-AE-GE=‎ 又H为FG中点 ‎∴H(,) …………4分 ‎∵B(,6) 、 D(0,2)、 H(,)在抛物线图象上 ‎ ‎ ∴ ‎ ‎∴抛物线的解析式是 ‎(2)∵MP=‎ MN=6-‎ H=MP-MN=‎ 由得 该函数简图如图所示:‎ 当00,即HP>MN ‎7.(1)‎ ‎(2)2.5×10+5×120+2×5=635(米)‎ ‎(3)‎ ‎(4) 相等的关系 ‎8.(1)a=-1,b=2,c=0‎ ‎(2)过P作直线x=1的垂线,可求P的纵坐标为,横坐标为.此时,MP=MF=PF=1,故△MPF为正三角形.‎ ‎(3)不存在.因为当t<,x<1时,PM与PN不可能相等,同理,当t>,x>1时,PM与PN不可能相等.‎ ‎9、 ‎ ‎10.‎ ‎11. (本题满分10分)‎ 解:(1)∵OA=OC,∴∠A=∠ACO ‎ ‎ ∵∠COB=2∠A ,∠COB=2∠PCB ‎ ‎ ∴∠A=∠ACO=∠PCB ……………………………………………………1分 ‎ ∵AB是⊙O的直径 ‎ ∴∠ACO+∠OCB=90° …………………………………………………2分 ‎ ∴∠PCB+∠OCB=90°,即OC⊥CP …………………………………………3分 ‎∵OC是⊙O的半径 ‎ ‎ ∴PC是⊙O的切线 …………………………………………………4分 ‎ (2)∵PC=AC ∴∠A=∠P ‎ ∴∠A=∠ACO=∠PCB=∠P ‎ ‎ ∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB ‎ ∴∠CBO=∠COB ……………………………………………5分 ‎ ∴BC=OC ‎ ∴BC=AB ………………………………………………………6分 ‎ (3)连接MA,MB ‎ ‎ ∵点M是弧AB的中点 ‎ ∴弧AM=弧BM ∴∠ACM=∠BCM ………7分 ‎ ‎∵∠ACM=∠ABM ∴∠BCM=∠ABM ‎ ‎ ∵∠BMC=∠BMN ‎ ∴△MBN∽△MCB ‎ ‎ ∴ ‎ ‎∴BM2=MC·MN ……………………8分 ‎ ∵AB是⊙O的直径,弧AM=弧BM ‎ ‎ ∴∠AMB=90°,AM=BM ‎ ∵AB=4 ∴BM= ………………………………………………………9分 ‎ ∴MC·MN=BM2=8 ……………………………………………………10分 ‎12. (本题满分10分)‎ ‎ 解:(1)∵AC⊥BD ‎∴四边形ABCD的面积 ‎ ‎ ‎ ‎ ‎ ‎ ………………………………………2分 ‎ ‎ ‎(2)过点A分别作AE⊥BD,垂足为E …………………………………3分 ‎∵四边形ABCD为平行四边形 ‎ ‎ 在Rt⊿AOE中,‎ ‎ ∴ …………4分 ‎ ∴ ………………………………5分 ‎ ∴四边形ABCD的面积 ……………………………………6分 ‎ (3)如图所示过点A,C分别作AE⊥BD,CF⊥BD,垂足分别为E,F …………7分 ‎ 在Rt⊿AOE中,‎ ‎ ∴‎ ‎ 同理可得 ‎ ‎ ………………………………8分 ‎ ‎ ‎…………………………………10分 ‎ ‎∴四边形ABCD的面积 ‎13. (本题满分11分)‎ ‎ 解:(1)因抛物线经过坐标原点O(0,0)和点E(4,0)‎ 故可得c=0,b=4‎ 所以抛物线的解析式为…………………………………………1分 由 得当x=2时,该抛物线的最大值是4. …………………………………………2分 ‎(2)① 点P不在直线ME上. ‎ 已知M点的坐标为(2,4),E点的坐标为(4,0),‎ 设直线ME的关系式为y=kx+b.‎ 于是得 ,解得 所以直线ME的关系式为y=-2x+8. …………………………………………3分 由已知条件易得,当时,OA=AP=,…………………4分 ‎∵ P点的坐标不满足直线ME的关系式y=-2x+8. [来源:Zxxk.Com]‎ ‎∴ 当时,点P不在直线ME上. ……………………………………5分 ‎②以P、N、C、D为顶点的多边形面积可能为5‎ ‎∵ 点A在x轴的非负半轴上,且N在抛物线上, ‎ ‎∴ OA=AP=t.‎ ‎∴ 点P,N的坐标分别为(t,t)、(t,-t 2+4t) …………………………………6分 ‎∴ AN=-t 2+4t (0≤t≤3) ,‎ ‎∴ AN-AP=(-t 2+4 t)- t=-t 2+3 t=t(3-t)≥0 , ∴ PN=-t 2+3 t ‎ ‎…………………………………………………………………………………7分 ‎(ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,∴ S=DC·AD=×3×2=3. ‎ ‎(ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形 ‎∵ PN∥CD,AD⊥CD,‎ ‎∴ S=(CD+PN)·AD=[3+(-t 2+3 t)]×2=-t 2+3 t+3…………………8分 当-t 2+3 t+3=5时,解得t=1、2…………………………………………………9分 ‎ 而1、2都在0≤t≤3范围内,故以P、N、C、D为顶点的多边形面积为5‎ 综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5,‎ 当t=1时,此时N点的坐标(1,3)………………………………………10分 当t=2时,此时N点的坐标(2,4)………………………………………11分 说明:(ⅱ)中的关系式,当t=0和t=3时也适合.(故在阅卷时没有(ⅰ),只有(ⅱ)也可以,不扣分)‎ ‎14. 解:(1)∵二次函数的图像经过点A(2,0)C(0,-1)‎ ‎∴‎ ‎ 解得: b=- c=-1-------------------2分 ‎∴二次函数的解析式为 --------3分 ‎(2)设点D的坐标为(m,0) (0<m<2)‎ ‎∴ OD=m ∴AD=2-m 由△ADE∽△AOC得, --------------4分 ‎∴‎ ‎∴DE=-----------------------------------5分 ‎∴△CDE的面积=××m ‎==‎ 当m=1时,△CDE的面积最大 ‎∴点D的坐标为(1,0)--------------------------8分 ‎(3)存在 由(1)知:二次函数的解析式为 设y=0则 解得:x1=2 x2=-1‎ ‎∴点B的坐标为(-1,0) C(0,-1)‎ 设直线BC的解析式为:y=kx+b ‎∴ 解得:k=-1 b=-1‎ ‎∴直线BC的解析式为: y=-x-1‎ 在Rt△AOC中,∠AOC=900 OA=2 OC=1‎ 由勾股定理得:AC=‎ ‎∵点B(-1,0) 点C(0,-1)‎ ‎∴OB=OC ∠BCO=450‎ ‎①当以点C为顶点且PC=AC=时,‎ 设P(k, -k-1)‎ 过点P作PH⊥y轴于H ‎∴∠HCP=∠BCO=450‎ CH=PH=∣k∣ 在Rt△PCH中 k2+k2= 解得k1=, k2=-‎ ‎∴P1(,-) P2(-,)---10分 ‎②以A为顶点,即AC=AP=‎ 设P(k, -k-1)‎ 过点P作PG⊥x轴于G AG=∣2-k∣ GP=∣-k-1∣‎ 在Rt△APG中 AG2+PG2=AP2‎ ‎(2-k)2+(-k-1)2=5‎ 解得:k1=1,k2=0(舍)‎ ‎∴P3(1, -2) ----------------------------------11分 ‎③以P为顶点,PC=AP设P(k, -k-1)‎ 过点P作PQ⊥y轴于点Q PL⊥x轴于点L ‎∴L(k,0)‎ ‎∴△QPC为等腰直角三角形 ‎ PQ=CQ=k 由勾股定理知 CP=PA=k ‎ ‎∴AL=∣k-2∣, PL=|-k-1|‎ 在Rt△PLA中 ‎(k)2=(k-2)2+(k+1)2‎ 解得:k=∴P4(,-) ------------------------12分 综上所述: 存在四个点:P1(,-) ‎ P2(-,) P3(1, -2) P4(,-)‎ ‎15.(本题12分)‎ B F A P E O x y G P′‎ P′‎ ‎(图1)‎ ‎ 解:(1);………4分 (2)(0,),;……4分(各2分)‎ ‎ (3)①当点在线段上时,过作⊥轴,为垂足(如图1)‎ ‎ ∵,,∠∠90°‎ ‎ ∴△≌△,∴﹒‎ 又∵,∠60°,∴‎ ‎ 而,∴,‎ B F A P E O x y M P′‎ H ‎(图2)‎ ‎ 由得 ;………………………………………………………………1‎ 分 ‎ 当点P在线段上时,形成的是三角形,不存在菱形;‎ ‎ 当点P在线段上时,‎ 过P作⊥,⊥,、分别为垂足(如图2)‎ ‎ ∵,∴,∴‎ ‎ ∴, 又∵‎ ‎ 在Rt△中,‎ ‎ 即,解得.…………………………………………………1分 B F A P E O x Q′‎ B′‎ Q C C1‎ D1‎ ‎(图3)‎ y ‎②存在﹒理由如下:‎ ‎ ∵,∴,,‎ 将△绕点顺时针方向旋转90°,得到 ‎△(如图3)‎ ‎ ∵⊥,∴点在直线上,‎ ‎ C点坐标为(,-1)‎ ‎ 过作∥,交于点Q,‎ 则△∽△‎ ‎ 由,可得Q的坐标为(-,)………………………1分 根据对称性可得,Q关于直线EF的对称点(-,)也符合条件.……1分 ‎1‎ ‎-2‎ ‎1‎ A x y O B P M C Q E D ‎16.解:(1)当a = 0时,y = x+1,图象与x轴只有一个公共点………(1分)‎ 当a≠0时,△=1- ‎4a=0,a = ,此时,图象与x轴只有一个公共点.‎ ‎∴函数的解析式为:y=x+1 或`y=x2+x+1……(3分)‎ ‎ (2)设P为二次函数图象上的一点,过点P作PC⊥x ‎ 轴于点C.‎ ‎∵是二次函数,由(1)知该函数关系式为:‎ y=x2+x+1,则顶点为B(-2,0),图象与y轴的交点 坐标为A(0,1)………(4分)‎ ‎∵以PB为直径的圆与直线AB相切于点B ∴PB⊥AB 则∠PBC=∠BAO ‎ ∴Rt△PCB∽Rt△BOA ‎ ∴,故PC=2BC,……………………………………………………(5分)‎ 设P点的坐标为(x,y),∵∠ABO是锐角,∠PBA是直角,∴∠PBO是钝角,∴x<-2‎ ‎∴BC=-2-x,PC=-4-2x,即y=-4-2x, P点的坐标为(x,-4-2x)‎ ‎∵点P在二次函数y=x2+x+1的图象上,∴-4-2x=x2+x+1…………………(6分)‎ 解之得:x1=-2,x2=-10‎ ‎∵x<-2 ∴x=-10,∴P点的坐标为:(-10,16)…………………………………(7分)‎ ‎(3)点M不在抛物线上……………………………………………(8分)‎ 由(2)知:C为圆与x 轴的另一交点,连接CM,CM与直线PB的交点为Q,过点M作x轴的垂线,垂足为D,取CD的中点E,连接QE,则CM⊥PB,且CQ=MQ ‎ ‎∴QE∥MD,QE=MD,QE⊥CE ‎∵CM⊥PB,QE⊥CE PC⊥x 轴 ∴∠QCE=∠EQB=∠CPB ‎∴tan∠QCE= tan∠EQB= tan∠CPB = CE=2QE=2×2BE=4BE,又CB=8,故BE=,QE= ‎∴Q点的坐标为(-,)‎ 可求得M点的坐标为(,)…………………………………………………(11分)‎ ‎∵=≠ ‎∴C点关于直线PB的对称点M不在抛物线上……………………(12分)‎ ‎(其它解法,仿此得分)‎ ‎17.(14分)(1)∵A、D关于点Q成中心对称,HQ⊥AB,‎ ‎∴=90°,HD=HA,‎ ‎∴,…………………………………………………………………………3分 ‎(图1)‎ ‎(图2)‎ ‎∴△DHQ∽△ABC. ……………………………………………………………………1分 ‎(2)①如图1,当时, ‎ ED=,QH=,‎ 此时. …………………………………………3分 当时,最大值.‎ ‎②如图2,当时,‎ ED=,QH=,‎ 此时. …………………………………………2分 当时,最大值.‎ ‎∴y与x之间的函数解析式为 y的最大值是.……………………………………………………………………1分 ‎(3)①如图1,当时,‎ 若DE=DH,∵DH=AH=, DE=,‎ ‎∴=,.‎ 显然ED=EH,HD=HE不可能; ……………………………………………………1分 ‎②如图2,当时,‎ 若DE=DH,=,; …………………………………………1分 若HD=HE,此时点D,E分别与点B,A重合,; ………………………1分 若ED=EH,则△EDH∽△HDA,‎ ‎∴,,. ……………………………………1分 ‎∴当x的值为时,△HDE是等腰三角形.‎ ‎(其他解法相应给分)‎ ‎18.解:⑴ 由于抛物线经过点,可设抛物线的解析式为,则,         ‎ ‎ 解得 ‎∴抛物线的解析式为   ……………………………4分 ‎⑵ 的坐标为 ……………………………5分 直线的解析式为 直线的解析式为 ‎ 由 ‎ 求得交点的坐标为        ……………………………8分 ‎⑶ 连结交于,的坐标为 又∵,‎ ‎  ∴,且 ‎    ∴四边形是菱形          ……………………………12分 ‎19、‎ ‎20、 ‎ ‎21.(1)判断:EN与MF相等 (或EN=MF),点F在直线NE上, 3分 ‎(说明:答对一个给2分)‎ ‎(2)成立. 4分 证明:‎ 法一:连结DE,DF. 5分 ‎∵△ABC是等边三角形, ∴AB=AC=BC.‎ 又∵D,E,F是三边的中点, ‎ ‎∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.‎ 又∠MDF+∠FDN=60°, ∠NDE+∠FDN=60°, ‎ ‎∴∠MDF=∠NDE. 7分 在△DMF和△DNE中,DF=DE,DM=DN, ∠MDF=∠NDE,‎ ‎∴△DMF≌△DNE. 8分 N C A B F M D E N C A B F M D E ‎∴MF=NE.   9分 法二:‎ 延长EN,则EN过点F. 5分 ‎∵△ABC是等边三角形, ∴AB=AC=BC.‎ 又∵D,E,F是三边的中点, ∴EF=DF=BF. ‎ ‎ ∵∠BDM+∠MDF=60°, ∠FDN+∠MDF=60°,‎ ‎∴∠BDM=∠FDN. 7分 又∵DM=DN, ∠ABM=∠DFN=60°,‎ ‎∴△DBM≌△DFN. 8分 ‎∴BM=FN.‎ ‎∵BF=EF, ∴MF=EN. 9分 法三:‎ 连结DF,NF. 5分 ‎∵△ABC是等边三角形, ‎ ‎∴AC=BC=AC.‎ 又∵D,E,F是三边的中点, ‎ ‎∴DF为三角形的中位线,∴DF=AC=AB=DB. ‎ 又∠BDM+∠MDF=60°, ∠NDF+∠MDF=60°, ‎ ‎∴∠BDM=∠FDN. 7分 在△DBM和△DFN中,DF=DB,‎ DM=DN, ∠BDM=∠NDF,∴△DBM≌△DFN. ‎ ‎∴∠B=∠DFN=60°. 8分 又∵△DEF是△ABC各边中点所构成的三角形,‎ ‎∴∠DFE=60°.‎ ‎∴可得点N在EF上,‎ ‎∴MF=EN. 9分 ‎(3)画出图形(连出线段NE), 11分 MF与EN相等的结论仍然成立(或MF=NE成立). 12分 ‎22(1) 利用中心对称性质,画出梯形OABC. 1分 ‎∵A,B,C三点与M,N,H分别关于点O中心对称,‎ ‎∴A(0,4),B(6,4),C(8,0) 3分 ‎(写错一个点的坐标扣1分)‎ O M N H A C E F D B ‎↑‎ ‎→‎ ‎-8‎ ‎(-6,-4)‎ x y ‎(2)设过A,B,C三点的抛物线关系式为,‎ ‎∵抛物线过点A(0,4), ‎ ‎∴.则抛物线关系式为. 4分 将B(6,4), C(8,0)两点坐标代入关系式,得 ‎ 5分 ‎ 解得 6分 所求抛物线关系式为:. 7分 ‎(3)∵OA=4,OC=8,∴AF=4-m,OE=8-m. 8分 ‎ ∴ ‎ ‎ OA(AB+OC)AF·AGOE·OFCE·OA ‎ ‎ ‎ ( 0<<4) 10分 ‎∵. ∴当时,S的取最小值.‎ 又∵0<m<4,∴不存在m值,使S的取得最小值. 12分 ‎(4)当时,GB=GF,当时,BE=BG. 14分