- 872.15 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
反比例函数中考真题回顾一
17.(2010江苏淮安)若一次函数y=2x+l的图象与反比例函数图象的一个交点横坐标为l,则反比例函数关系式为 .
【答案】B
18.(2010湖北荆门)函数y=k(x-1)的图象向左平移一个单位后与反比例函数y=的图象的交点为A、B,若点A的坐标为(1,2),则点B的坐标为______.
【答案】(-1,-2)
19.(2010 四川成都)已知是正整数,是反比例函数图象上的一列点,其中.记,,若(是非零常数),则A1·A2·…·An的值是________________________(用含和的代数式表示).
【答案】
20.(2010广东中山)已知一次函数与反比例函数的图象,有一个交点的纵坐标是2,则的b值为 .
A.a﹣2 B.2﹣a C.a D.﹣a
【答案】-1
21.(2010湖北省咸宁)如图,一次函数的图象与轴,轴交于A,B两点,
与反比例函数的图象相交于C,D两点,分别过C,D两
点作轴,轴的垂线,垂足为E,F,连接CF,DE.
有下列四个结论:
①△CEF与△DEF的面积相等; ②△AOB∽△FOE;
③△DCE≌△CDF; ④.
其中正确的结论是 .(把你认为正确结论的序号都填上)
y
x
D
C
A
B
O
F
E
(第16题)
【答案】①②④(多填、少填或错填均不给分)
22.(2010江苏扬州)反比例函数的图象经过点(-2,3),则此反比例函数的关系式是__________.
【答案】y=—
23.(2010湖北恩施自治州)在同一直角坐标系中,正比例函数的图象与反比例函数的图象有公共点,则 0(填“>”、“=”或“<”).
【答案】>
24.(2010山东泰安)如图,一次函数y=ax(a是常数)与反比例函数y=(k是常数)的图象相交与A、B两点,若A点的坐标为(-2,3),则B点的坐标为 .
【答案】(2,-3)
25.(2010云南楚雄)点(-2,3)在反比例函数的图像上,则这个反比例函数的表达式是 .
【答案】y=-
26.(2010云南昆明) 如图,点A(x1,y1)、B(x2,y2)都在双曲线上,且,;分别过点A、B向x
轴、y轴作垂线段,垂足分别为C、D、E、F,AC与BF相交于G点,四边形FOCG的面积为2,五边形AEODB的面积为14,那么双曲线的解析式为 .
第15题图
G
【答案】
27.(2010陕西西安)已知都在反比例函数的图象上。若
,则的值为 。
【答案】-12
28.(2010江苏 镇江)反比例函数的图象在第二、四象限,则n的取值范围为 ,为图象上两点,则y1 y2(用“<”或“>”填空)
【答案】
29.(2010 四川泸州)在反比例函数的图象上,有一系列点、、…、、,若的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2. 现分别过点、、…、、作轴与
轴的垂线段,构成若干个矩形如图8所示,将图中阴影部分的面积从左到右依次记为、、、,则________________,+++…+_________________.(用n的代数式表示)
【答案】5,
30.(2010 内蒙古包头)如图,已知一次函数的图象与反比例函数的图象在第一象限相交于点,与轴相交于点轴于点,的面积为1,则的长为 (保留根号).
y
O
x
A
C
B
【答案】
31.(2010 贵州贵阳)若点(-2,1)在反比例函数的图象上,则该函数的图象位于第 ▲ 象限.
【答案】二、四
32.(2010 福建泉州南安)如图,已知点A在双曲线y=上,且OA=4,过A作
AC⊥x轴于C,OA的垂直平分线交OC于B.
(1)则△AOC的面积= ,(2)△ABC的周长为 .
【答案】(1),(2).
33.(2010 四川自贡)两个反比例子函数y=,y=在第一象限内的图象如图所示,点P1,P2,P3,……,P2010在反比例函数y=图象上,它们的横坐标分别是x1,x2,x3,……,x2010,纵坐标分别是1,3,5,……,共2010个连续奇数,过点P1,P2,P3,……,P2010分别作y轴的平行线,与y=的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),……,Q2010(x2010,y2010),则y2010=_______________。
【答案】2009.5
34.(2010 湖北咸宁)如图,一次函数的图象与轴,轴交于A,B两点,
与反比例函数的图象相交于C,D两点,分别过C,D两
点作轴,轴的垂线,垂足为E,F,连接CF,DE.
有下列四个结论:
①△CEF与△DEF的面积相等; ②△AOB∽△FOE;
③△DCE≌△CDF; ④.
其中正确的结论是 .(把你认为正确结论的序号都填上)
y
x
D
C
A
B
O
F
E
(第16题)
【答案】①②④
35.(2010 广西钦州市)反比例函数(k >0)的图象与经过原点的直线l相交于A、B
两点,已知A点的坐标为(2,1),那么B点的坐标为 ▲ .
第6题
l
【答案】(-2,-1)
36.(2010青海西宁)根据反比例函数和一次函数的图象,请写出它们的一个共同点 ;一个不同点 . .
【答案】(答案不惟一)例如:相同点:图象都经过第一、三象限;不同点:一次函数图象是一条直线,反比例函数图象是双曲线等.
37.(2010吉林长春)如图,双曲线与直线的一个交点的横坐标为2,当x=3时, (填“>”“<”或“=”).
【答案】<
38.(2010新疆乌鲁木齐)已知点在反比例函数的图象上,则的大小关系为 (用“>”或“<”连接)
【答案】
39.(2010广西南宁)如图7所示,点、、在轴上,且,分别过点、、作轴的平行线,与分比例函数的图像分别 交于点、、,分别过点、、作轴的平行线,分别与 轴交于点、、,连接、、,那么图中阴影部分的面积之和为 .
【答案】
40.(2010年山西)如图,A是反比例函数图象上一点,过点A作轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为 。
【答案】
41.(2010贵州遵义)如图,在第一象限内,点P(2,3),M(α,2)是双曲线y=(k≠0)上的两点,PA⊥χ轴于点B,MB⊥χ轴于点B,PA与OM交于点C,则∠OAC的面积为 .
【答案】
42.(2010广东佛山)根据反比例函数y=的图象(请画图)回答问题:当函数值为正时,x的取值范围是 .
【答案】图略,x<0
43.(2010福建南平)函数y= 和y=在第一象限内的图像如图,点P是y= 的图像上一动点,PC⊥x轴于点C,交y=的图像于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA= AP.其中所有正确结论的序号是______________.
第18题
D
O
C
A
P
B
y
x
【答案】:①③④
44.(2010广西河池)如图3,Rt△ABC在第一象限,,AB=AC=2,
点A在直线上,其中点A的横坐标为1,且AB∥轴,
AC∥轴,若双曲线与△有交点,则k的
取值范围是 .
y
1
x
O
A
B
C
图3
【答案】
45.(2010内蒙赤峰)已知反比例函数,当-4≤x≤-1时,y的最大值是___________.
【答案】
三、解答题
1.(2010江苏苏州) (本题满分8分)如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、MA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.
【答案】
2.(2010安徽省中中考) 点P(1,)在反比例函数的图象上,它关于轴的对称点在一次函数的图象上,求此反比例函数的解析式。
【答案】
3.(2010广东广州,23,12分)已知反比例函数y=(m为常数)的图象经过点A(-1,6).
(1)求m的值;
(2)如图9,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.
【答案】解:(1)∵ 图像过点A(-1,6),. ∴
(2)分别过点A、B作x轴的垂线,垂足分别为点D、E,
由题意得,AD=6,OD=1,易知,AD∥BE,
∴△CBE∽△CAD,∴ .
∵AB=2BC,∴
∴,∴BE=2.
即点B的纵坐标为2
当y=2时,x=-3,易知:直线AB为y=2x+8,
∴C(-4,0)
4.(2010甘肃兰州)(本小题满分6分) 已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=-1时,y=1. 求x=-时,y的值.
【答案】(2)(本小题满分6分)
解:解:y1与x2成正比例,y2与x成反比例
设y1=k1x2,y2=,y=k1x2+…………………………………………………2分
把x=1,y=3,x=-1,y=1分别代入上式得 ……………………3分
∴ …………………………………………5分
当x=-, y=2×(-)2+=-2=- ………………………………6分
5.(2010甘肃兰州)(本题满分9分)如图,P1是反比例函数在第一象限图像上的一点,点A1 的坐标为(2,0).
(1)当点P1的横坐标逐渐增大时,△P1O A1的面积
将如何变化?
(2)若△P1O A1与△P2 A1 A2均为等边三角形,求
此反比例函数的解析式及A2点的坐标.
【答案】
(1)解:(1)△P1OA1的面积将逐渐减小. …………………………………2分
(2)作P1C⊥OA1,垂足为C,因为△P1O A1为等边三角形,
所以OC=1,P1C=,所以P1. ……………………………………3分
代入,得k=,所以反比例函数的解析式为. ……………4分
作P2D⊥A1 A2,垂足为D、设A1D=a,则OD=2+a,P2D=a,
所以P2. ……………………………………………………………6分
代入,得,化简得
解的:a=-1± ……………………………………………7分
∵a>0 ∴ ………………………………8分
所以点A2的坐标为﹙,0﹚ ………………………………………………9分
6.(2010江苏南通)(本小题满分9分)
如图,直线与双曲线相交于A(2,1)、B两点.
(1)求m及k的值;
(2)不解关于x、y的方程组直接写出点B的坐标;
(3)直线经过点B吗?请说明理由.
A
B
O
x
y
(第21题)
2
1
2
3
-3
-1
-2
1
3
-3
-1
-2
【答案】(1) 把A(2,1)分别代入直线与双曲线的解析式得:m= -1, k=2;
(2) B的坐标(-1,-2);
(3)当x=-1, m=-1代入,得y= -2×(-1)+4×(-1)=2-4=-2, 所以直线经过点B(-1,-2);
7.(2010山东济宁)如图,正比例函数的图象与反比例函数在第一象限的图象交于点,过点作轴的垂线,垂足为,已知的面积为1.
(1)求反比例函数的解析式;
(2)如果为反比例函数在第一象限图象上的点(点与点不重合),且点的横坐标为1,在轴上求一点,使最小.
(第20题)
【答案】
解:(1) 设点的坐标为(,),则.∴.
∵,∴.∴.
∴反比例函数的解析式为. 3分
(2) 由 得 ∴为(,). 4分
设点关于轴的对称点为,则点的坐标为(,).
令直线的解析式为.
∵为(,)∴∴
∴的解析式为. 6分
当时,.∴点为(,). 7分
8.(2010山东威海)如图,一次函数的图象与反比例函数的图象交于点A﹙-2,-5﹚C﹙5,n﹚,交y轴于点B,交x轴于点D.
(1) 求反比例函数和一次函数的表达式;
(2) 连接OA,OC.求△AOC的面积.
O
A
B
C
x
y
D
【答案】解:(1)∵ 反比例函数的图象经过点A﹙-2,-5﹚,
∴ m=(-2)×( -5)=10.
∴ 反比例函数的表达式为. ……………………………………………………2分
∵ 点C﹙5,n﹚在反比例函数的图象上,
∴ .
∴ C的坐标为﹙5,2﹚. …………………………………………………………………3分
∵ 一次函数的图象经过点A,C,将这两个点的坐标代入,得
解得 ………………………………………………………5分
∴ 所求一次函数的表达式为y=x-3. …………………………………………………6分
(2) ∵ 一次函数y=x-3的图像交y轴于点B,
∴ B点坐标为﹙0,-3﹚. ………………………………………………………………7分
∴ OB=3.
∵ A点的横坐标为-2,C点的横坐标为5,
∴ S△AOC= S△AOB+ S△BOC=. ………………10分
9.(2010浙江杭州) (本小题满分6分)
给出下列命题:
命题1. 点(1,1)是直线y = x与双曲线y = 的一个交点;
命题2. 点(2,4)是直线y = 2x与双曲线y = 的一个交点;
命题3. 点(3,9)是直线y = 3x与双曲线y = 的一个交点;
… … .
(1)请观察上面命题,猜想出命题(是正整数);
(2)证明你猜想的命题n是正确的.
【答案】
(1)命题n: 点(n , n2) 是直线y = nx与双曲线y =的一个交点(是正整数).
(2)把 代入y = nx,左边= n2,右边= n·n = n2,
∵左边 =右边, ∴点(n,n2)在直线上.
同理可证:点(n,n2)在双曲线上,
∴点(n,n2)是直线y = nx与双曲线y = 的一个交点,命题正确.
10.(2010浙江嘉兴)一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:,其图象为如图所示的一段曲线,且端点为和.
(1)求k和m的值;
(2)若行驶速度不得超过60(km/h),则汽车通过该路段最少需要多少时间?
(第20题)
【答案】(1)将代入,得,解得.
函数解析式为:.当时,,解得.
所以,,. …4分
(2)令,得.
结合函数图象可知,汽车通过该路段最少需要小时. …4分
11.(2010 浙江义乌)如图,一次函数的图象与反比例函数的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交轴、轴于点C、D,
y
x
P
B
D
A
O
C
且S△PBD=4,.
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当时,一次函数的值大于反比例
函数的值的的取值范围.
【答案】
解:(1)在中,令得 ∴点D的坐标为(0,2)
(2)∵ AP∥OD ∴Rt△PAC ∽ Rt△DOC
∵ ∴ ∴AP=6
又∵BD= ∴由S△PBD=4可得BP=2
∴P(2,6) 把P(2,6)分别代入与可得 全品中考网
一次函数解析式为:y=2x+2
反比例函数解析式为: