- 290.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
实数(提高)
【学习目标】
1. 了解无理数和实数的意义;
2. 了解有理数的概念、运算法则在实数范围内仍适用 .
【要点梳理】
【高清课堂:389317 立方根、实数,知识要点】
要点一、有理数与无理数
有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.
要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.
(2)常见的无理数有三种形式:①含类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,如.
要点二、实数
有理数和无理数统称为实数.
1.实数的分类
按定义分:
实数
按与0的大小关系分:
实数
2.实数与数轴上的点一一对应.
数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.
要点三、实数大小的比较
对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大.
正实数大于0,负实数小于0,两个负数,绝对值大的反而小.
要点四、实数的运算
有理数关于相反数和绝对值的意义同样适合于实数.
当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用.
【典型例题】
类型一、实数概念
1、把下列各数分别填入相应的集合内:
,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)
…
有理数集合
…
无理数集合
【答案与解析】
有理数有:, ,,,0,
无理数有:,,, ,,, 0.3737737773……
【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.
常见的无理数有三种形式:①含类.②看似循环而实质不循环的数,如:0.3737737773……③带有根号的数,但根号下的数字开方开不尽,如,, ,,.
举一反三:
【高清课堂:389317 立方根 实数 ,例1】
【变式】判断正误,在后面的括号里对的用 “√”,错的记“×”表示,并说明理由.
(1)无理数都是开方开不尽的数.( )
(2)无理数都是无限小数.( )
(3)无限小数都是无理数.( )
(4)无理数包括正无理数、零、负无理数.( )
(5)不带根号的数都是有理数.( )
(6)带根号的数都是无理数.( )
(7)有理数都是有限小数.( )
(8)实数包括有限小数和无限小数.( )
【答案】
(1)(×)无理数不只是开方开不尽的数,还有,1.020 020 002…这类的数也是无理数.
(2)(√)无理数是无限不循环小数,是属于无限小数范围内的数.
(3)(×)无限小数包括无限循环小数和无限不循环小数两类数,其中无限不循环小数才是无理数.
(4)(×)0是有理数.
(5)(×)如,虽然不带根号,但它是无限不循环小数,所以是无理数.
(6)(×)如,虽然带根号,但=9,这是有理数.
(7)(×)有理数还包括无限循环小数.
(8)(√)有理数可以用有限小数和无限循环小数表示,无理数是无限不循环小数,所以 实数可以用有限小数和无限小数表示.
类型二、实数大小的比较
2、比较与的大小.
【思路点拨】根据,,则来比较两个实数的大小.
【答案与解析】
解:因为,.
所以<
【总结升华】实数的比较有多种方法,除了上述方法外,还有作差法、作商法、同分子法、倒数法等.
举一反三:
【高清课堂:389317 立方根 实数 ,例2】
【变式】已知实数、、在数轴上的对应点如图所示,试化简:
.
【答案】由图知,,.
∴ ,,,.
∴
.
类型三、实数的运算
3、求的值.
【答案与解析】
解:(1)当≥0时,,,
所以.
(2)当<0时,,,
所以.
即值为0或2.
【总结升华】本题是涉及平方根(算术平方根)和立方根的综合运算,但还应注意本题需要分类讨论.要注意对的讨论,而开立方不需要讨论符号.
举一反三:
【高清课堂:389317 立方根 实数 ,例3】
【变式】若的两个平方根是方程的一组解.
(1)求的值;
(2)求的算术平方根.
【答案】
解:(1)∵ 的平方根是的一组解,则设的平方根为,,
则根据题意得:解得
∴ 为.
(2)∵ .
∴ 的算术平方根为4.
类型四、实数的综合运用
【高清课堂:389317 立方根 实数 ,例4】
4、已知,且,求的值.
【答案与解析】
解:∵ ,且,.
∴ ,即,.
解得 =3,=5,得=64.
∴ .
【总结升华】本题考查非负性与立方、立方根的综合运用,由,可求、,又,所以=64,则可求.
举一反三:
【变式】已知,求的值.
【答案】
解:知条件得,
由②得,,∵ ,∴ ,则.
把代入①得,=1.
∴ .
5、如图所示:在平行四边形ABCO中,点A、C的坐标分别是,.
(1)写出点B的坐标;
(2)将平行四边形ABCO向左平移个单位长度,求所得平行四边形四个顶点的坐标;
(3)求平行四边形ABCO的面积.
【思路点拨】(1)由C点坐标可知,由于AB=OC,所以B点坐标是纵坐标与A点坐标相同,横坐标即将A点坐标右移.(2)平行四边形向左平移个单位后,四个顶点的纵坐标不变,横坐标分别减去.(3)平行四边形的面积用OC为底边,A点或B点的纵坐标为高来求的.
【答案与解析】
解:(1).
(2)将四个顶点、、、的横坐标分别减去得:,、、.
(3).
【总结升华】有理数的运算法则与运算律对实数仍然适用,在实数范围内,加、减、乘、除、乘方五种运算同有理数一样.