- 2.98 MB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
一.折叠类
1. (13江苏徐州卷)在平面直角坐标系中,已知矩形ABCD中,边,边,且AB、AD分别在x轴、y轴的正半轴上,点A与坐标原点重合.将矩形折叠,使点A落在边DC上,设点是点A落在边DC上的对应点.
(图1)
(1)当矩形ABCD沿直线折叠时(如图1),
求点的坐标和b的值;
(2)当矩形ABCD沿直线折叠时,
① 求点的坐标(用k表示);求出k和b之间的关系式;
② 如果我们把折痕所在的直线与矩形的位置分
为如图2、3、4所示的三种情形,
请你分别写出每种情形时k的取值范围.
(将答案直接填在每种情形下的横线上)
(——当如图1、2折叠时,求D的取值范围?)
(图4)
(图2)
(图3)
k的取值范围是 ; k的取值范围是 ;k的取值范围是 ;
[解] (1)如图答5,设直线与OD交于点E,与OB交于点F,连结,则
OE = b,OF = 2b,设点的坐标为(a,1)
因为,,
所以,所以△∽△OFE.
所以,即,所以.
所以点的坐标为(,1).
连结,则.
在Rt△中,根据勾股定理有 ,
即,解得.
(2)如图答6,设直线与OD交于点E,与OB交于点F,连结,则
OE = b,,设点的坐标为(a,1).
因为,.
所以,所以△∽△OFE.
所以,即,所以.
所以点的坐标为(,1).
连结,在Rt△中,,,.
因为,
所以.所以.
在图答6和图答7中求解参照给分.
(3)图13﹣2中:;
图13﹣3中:≤≤;
图13﹣4中:
(图答5)
(图答7)
(图答6)
[点评]这是一道有关折叠的问题,主要考查一次函数、四边形、相似形等知识,试题中贯穿了方程思想和数形结合的思想,请注意体会。
2. (13广西钦州卷)如图,在平面直角坐标系中,矩形的顶点为原点,为上一点,把沿折叠,使点恰好落在边上的点处,点的坐标分别为和.
(1)求点的坐标;
(2)求所在直线的解析式;
5
D
O
E
A
x
y
C
M
B
(3)设过点的抛物线与直线的另一个交点为,问在该抛物线上是否存在点,使得为等边三角形.若存在,求出点的坐标;若不存在,请说明理由.
[解] (1)根据题意,得,
,.
点的坐标是;
(2),设,
则,
,
在中,.
.
5
D
H
O
G
E
A
x
y
C
F
M
B
解之,得,
即点的坐标是.
设所在直线的解析式为,
解之,得
所在直线的解析式为;
(3)点在抛物线上,.
即抛物线为.
假设在抛物线上存在点,使得为等边三角形,
根据抛物线的对称性及等边三角形的性质,得点一定在该抛物线的顶点上.
设点的坐标为,
,,
即点的坐标为.
设对称轴与直线交于点,与轴交于点.
则点的坐标为.
,点在轴的右侧,
,.
,
在中,,.
解之,得.
,.
点的坐标为.
在抛物线上存在点,使得为等边三角形.
[点评]这是一道以折叠为背景的综合型压轴题,综合性较强,这类试题在各地中考题中出现的频率不小,本题中第1、2小题只需根据折叠的基本性质结合函数知识即可得解,第3小题是探究型问题,是一道检测学生能力的好题。
3(13湖北咸宁卷)如图,是一张放在平面直角坐标系中的矩形纸片,为原点,点在轴的正半轴上,点在轴的正半轴上,.
(1)在边上取一点,将纸片沿翻折,使点落在边上的点处,求点,的坐标;
(2)若过点的抛物线与轴相交于点,求抛物线的解析式和对称轴方程;
(3)若(2)中的抛物线与轴交于点,在抛物线上是否存在点,使的内心在坐标轴上?若存在,求出点的坐标,若不存在,请说明理由.
(4)
3
5
若(2)中的抛物线与轴相交于点,点在线段上移动,作直线,当点移动到什么位置时,两点到直线的距离之和最大?请直接写出此时点的坐标及直线的解析式.
4. .(14台州市) O
x
y
(第24题)
C
B
E
D
24.如图,四边形
是一张放在平面直角坐标系中的矩形纸片,点在轴上,点在轴上,将边折叠,使点落在边的点处.已知折叠,且.
(1)判断与是否相似?请说明理由;
(2)求直线与轴交点的坐标;
(3)是否存在过点的直线,使直线、直线与轴所围成的三角形和直线、直线与轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.
解:(1)与相似.
理由如下:
由折叠知,,
(第24题图2)
O
x
y
C
B
E
D
P
M
G
l
N
A
F
,
又,
.
(2),设,
则.
由勾股定理得.
.
由(1),得,
,
.
在中,,
,解得.
,点的坐标为,
点的坐标为,
设直线的解析式为,
解得
,则点的坐标为.
(3)满足条件的直线有2条:,
.
如图2:准确画出两条直线.
5. (14宁德市)26. 已知:矩形纸片中,厘米,厘米,点在上,且厘米,点是边上一动点.按如下操作:
步骤一,折叠纸片,使点与点重合,展开纸片得折痕(如图1所示);
步骤二,过点作,交所在的直线于点,连接(如图2所示)
(1)无论点在边上任何位置,都有 (填“”、“”、“”号);
(2)如图3所示,将纸片放在直角坐标系中,按上述步骤一、二进行操作:
①当点在点时,与交于点点的坐标是( , );
②当厘米时,与交于点点的坐标是( , );
③当厘米时,在图3中画出(不要求写画法),并求出与的交点的坐标;
(3)点在运动过程,与形成一系列的交点观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.
A
P
B
C
M
D
(P)E
B
C
图1
0(A)
B
C
D
E
6
12
18
24
x
y
6
12
18
图3
A
N
P
B
C
M
D
E
Q
T
图2
解: (1).
(2)①;②.
③画图,如图所示.
解:方法一:设与交于点.
0(A)
B
C
D
E
6
12
18
24
x
y
6
12
18
F
M
G
P
在中,,
.
,,
.
又,
.
.
.
.
方法二:过点作,垂足为,则四边形是矩形.
,.
设,则.
在中,.
.
.
.
.
(3)这些点形成的图象是一段抛物线.
函数关系式:.
6. (14日照市)24. 如图,直线EF将矩形纸片ABCD分成面积相等的两部分,E、F分别与BC交于点E,与AD交于点F(E,F不与顶点重合),设AB=a,AD=b,BE=x.
(Ⅰ)求证:AF=EC;
(Ⅱ)用剪刀将纸片沿直线EF剪开后,再将纸片ABEF沿AB对称翻折,然后平移拼接在梯形ECDF的下方,使一底边重合,直腰落在边DC的延长线上,拼接后,下方的梯形记作EE′B′C.
(1)求出直线EE′分别经过原矩形的顶点A和顶点D时,所对应的 x︰b的值;
(2)在直线EE′
经过原矩形的一个顶点的情形下,连接BE′,直线BE′与EF是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当a与b满足什么关系时,它们垂直?
解: (Ⅰ)证明:∵AB=a,AD=b,BE=x ,S梯形ABEF= S梯形CDFE.
∴a(x+AF)=a(EC+b-AF),
∴2AF=EC+(b-x).
又∵EC=b-x,
∴2AF=2EC,即AF=EC;
(Ⅱ)(1)当直线EE′经过原矩形的顶点D时,如图(一),
∵EC∥E′B′,
∴=.
由EC=b-x,E′B′=EB=x, DB′=DC+CB′=2a,
得,
∴x︰b= ;
当直线E′E经过原矩形的顶点A时,如图(二),
在梯形AE′B′D中,
∵EC∥E′B′,点C是DB′的中点,
∴CE=(AD+ E′B′),
即b-x=(b+x),
∴x︰b=.
(2) 如图(一), 当直线EE′ 经过原矩形的顶点D时,BE′∥EF.
证明:连接BF.
∵FD∥BE, FD=BE,
∴四边形FBED是平行四边形,
∴FB∥DE, FB=DE,
又∵EC∥E′B′, 点C是DB′的中点,
∴DE=EE′,
∴FB∥EE′, FB= EE′,
∴四边形BE′EF是平行四边形
∴BE′∥EF.
如图(二), 当直线EE′ 经过原矩形的顶点A时,显然BE′与EF不平行,设直线EF与BE′交于点G.过点E′作E′M⊥BC于M, 则E′M=a..
∵x︰b=,
∴EM=BC=b.
若BE′与EF垂直,则有∠GBE+∠BEG=90°,
又∵∠BEG=∠FEC=∠MEE′, ∠MEE′+∠ME′E=90°,
∴∠GBE=∠ME′E.
在Rt△BME′中,tan∠E′BM= tan∠GBE==.
在Rt△EME′中,tan∠ME′E ==,
∴=.
又∵a>0,b>0,
,
∴当时,BE′与EF垂直.
7. (14荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.
(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;
(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.
图1
图2
解:(1)由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,则∠BPE=90°.∴∠OPE+∠APB=90°.又∠APB+∠ABP=90°,∴∠OPE=∠PBA.
∴Rt△POE∽Rt△BPA.
∴.即.∴y=(0<x<4).
且当x=2时,y有最大值.
(2)由已知,△PAB、△POE均为等腰三角形,可得P(1,0),E(0,1),B(4,3).
设过此三点的抛物线为y=ax2+bx+c,则∴
y=.
(3)由(2)知∠EPB=90°,即点Q与点B重合时满足条件.
直线PB为y=x-1,与y轴交于点(0,-1).
将PB向上平移2个单位则过点E(0,1),
∴该直线为y=x+1.
由得∴Q(5,6).
故该抛物线上存在两点Q(4,3)、(5,6)满足条件.
8. (14湖北省孝感市)25.在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:
第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);
第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).
(图1) (图2)
请解答以下问题:
(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论.
(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?
(3)设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系. 设直线为,当=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上(E、F分别为AB、CD中点)?为什么?
(图3)
解:(1)△BMP是等边三角形.
证明:连结AN
∵EF垂直平分AB ∴AN = BN
由折叠知 AB = BN
∴AN = AB = BN ∴△ABN为等边三角形
∴∠ABN =60° ∴∠PBN =30°
又∵∠ABM =∠NBM =30°,∠BNM =∠A =90°
∴∠BPN =60°
∠MBP =∠MBN +∠PBN =60°
∴∠BMP =60°
∴∠MBP =∠BMP =∠BPM =60°
∴△BMP为等边三角形 .
(2)要在矩形纸片ABCD上剪出等边△BMP,则BC ≥BP
在Rt△BNP中, BN = BA =a,∠PBN =30°
∴BP = ∴b≥ ∴a≤b .
∴当a≤b时,在矩形上能剪出这样的等边△BMP.
(3)∵∠M′BC =60° ∴∠ABM′ =90°-60°=30°
在Rt△ABM′中,tan∠ABM′ = ∴tan30°= ∴AM′ =
∴M′(,2). 代入y=kx中 ,得k==
设△ABM′沿BM′折叠后,点A落在矩形ABCD内的点为
过作H BC交BC于H.
∵△BM′ ≌△ABM′ ∴==30°, B = AB =2
∴-=30°.
在Rt△BH中, H =B =1 ,BH=
∴
∴落在EF上.
(图2) (图3)
9. (14广东省茂名市)25. 如图,已知平面直角坐标系中,有一矩形纸片OABC,O为坐标原点,轴, B(3,),现将纸片按如图折叠,AD,DE为折痕,.折叠后,点O落在点,点C落在点,并且与在同一直线上.
(1)求折痕AD 所在直线的解析式;
(第25题图)
C
D
O
A
B
E
O1
C1
x
y
(2)求经过三点O,,C的抛物线的解析式;
(3)若⊙的半径为,圆心在(2)的抛物线上运动,
⊙与两坐标轴都相切时,求⊙半径的值.
解:
(第25题图)
C
D
O
A
B
E
O1
C1
x
y
F
(1)由已知得
.
∴,
∴.
设直线AD的解析式为.
把A,D坐标代入上式得:
,
解得:,
折痕AD所在的直线的解析式是.
(2)过作于点F,
由已知得,∴.
又DC=3-1=2,∴.
∴在中, .
,
∴,而已知.
法一:设经过三点O,C1,C的抛物线的解析式是
点在抛物线上,∴,∴
∴为所求
法二:设经过三点O,C1,C的抛物线的解析式是.
把O,C1,C的坐标代入上式得:
,
解得,∴为所求.
(3)设圆心,则当⊙P与两坐标轴都相切时,有.
由,得,解得(舍去),.
由,得解得(舍去),.
∴所求⊙P的半径或.
10. (14重庆市) 28.已知,在Rt△OAB中,∠OAB=900,∠BOA=300,AB=2。若以O为坐标原点,OA所在直线为轴,建立如图所示的平面直角坐标系,点B在第一象限内。将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处。
(1)求点C的坐标;
(2)若抛物线(≠0)经过C、A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作轴的平行线,交抛物线于点M。问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由。
注:抛物线(≠0)的顶点坐标为,对称轴公式为
解: (1)过点C作CH⊥轴,垂足为H
∵在Rt△OAB中,∠OAB=900,∠BOA=300,AB=2
∴OB=4,OA=
由折叠知,∠COB=300,OC=OA=
∴∠COH=600,OH=,CH=3
∴C点坐标为(,3)
(2)∵抛物线(≠0)经过C(,3)、A(,0)两点
∴ 解得:
∴此抛物线的解析式为:
(3)存在。因为的顶点坐标为(,3)即为点C
MP⊥轴,设垂足为N,PN=,因为∠BOA=300,所以ON=
∴P(,)
作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E
把代入得:
∴ M(,),E(,)
同理:Q(,),D(,1)
要使四边形CDPM为等腰梯形,只需CE=QD
即,解得:,(舍)
∴ P点坐标为(,)
∴ 存在满足条件的点P,使得四边形CDPM为等腰梯形,此时P点的坐为(,)
11. (15山东青岛)24.(本小题满分12分)
已知:如图①,在中,,,,点由出发沿方向向点匀速运动,速度为1cm/s;点由出发沿方向向点匀速运动,速度为2cm/s;连接.若设运动的时间为(),解答下列问题:
(1)当为何值时,?
(2)设的面积为(),求与之间的函数关系式;
(3)是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;
A
Q
C
P
B
图①
A
Q
C
P
B
图②
(4)如图②,连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
12. (15浙江湖州)24.(本小题12分)
已知:在矩形中,,.分别以所在直线为轴和轴,建立如图所示的平面直角坐标系.是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点.
(1)求证:与的面积相等;
(2)记,求当为何值时,有最大值,最大值为多少?
(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由.
(15浙江湖州24题解析)24.(本小题12分)
(1)证明:设,,与的面积分别为,,
由题意得,.
,.
,即与的面积相等.
(2)由题意知:两点坐标分别为,,
,
.
当时,有最大值.
.
(3)解:设存在这样的点,将沿对折后,点恰好落在边上的点,过点作,垂足为.
由题意得:,,,
,.
又,
.
,,
.
,,解得.
.
存在符合条件的点,它的坐标为.
13(15浙江衢州)24、(本题14分)已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;
(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;
(2)当纸片重叠部分的图形是四边形时,求t的取值范围;
(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由。
y
B
C
y
T
A
C
B
O
x
O
T
A
x
(15浙江衢州24题解析)24、(本题14分)
解:(1) ∵A,B两点的坐标分别是A(10,0)和B(8,),
∴,
∴
当点A´在线段AB上时,∵,TA=TA´,
∴△A´TA是等边三角形,且,
∴,,
A´
y
E
∴,
x
O
C
T
P
B
A
当A´与B重合时,AT=AB=,
所以此时。
(2)当点A´在线段AB的延长线,且点P在线段AB(不与B重合)上时,
纸片重叠部分的图形是四边形(如图(1),其中E是TA´与CB的交点),
A´
y
x
当点P与B重合时,AT=2AB=8,点T的坐标是(2,0)
又由(1)中求得当A´与B重合时,T的坐标是(6,0)
P
B
E
所以当纸片重叠部分的图形是四边形时,。
F
C
(3)S存在最大值
A
T
O
当时,,
在对称轴t=10的左边,S的值随着t的增大而减小,
∴当t=6时,S的值最大是。
当时,由图,重叠部分的面积
∵△A´EB的高是,
∴
当t=2时,S的值最大是;
当,即当点A´和点P都在线段AB的延长线是(如图,其中E是TA´与CB的交点,F是TP与CB的交点),
∵,四边形ETAB是等腰形,∴EF=ET=AB=4,
∴
综上所述,S的最大值是,此时t的值是。
14 15浙江绍兴)24.将一矩形纸片放在平面直角坐标系中,,,.动点从点出发以每秒1个单位长的速度沿向终点运动,运动秒时,动点从点出发以相等的速度沿向终点运动.当其中一点到达终点时,另一点也停止运动.设点的运动时间为(秒).
(1)用含的代数式表示;
(2)当时,如图1,将沿翻折,点恰好落在边上的点处,求点的坐标;
(3)连结,将沿翻折,得到,如图2.问:与能否平行?与能否垂直?若能,求出相应的值;若不能,说明理由.
图1
O
P
A
x
B
D
C
Q
y
(第24题图)
图2
O
P
A
x
B
C
Q
y
E
(15浙江绍兴24题解析)24.(本题满分14分)
解:(1),.
图1
O
P
A
x
B
D
C
Q
y
图2
O
P
A
x
B
C
Q
y
图3
O
F
A
x
B
C
y
E
Q
P
(2)当时,过点作,交于,如图1,
则,,
,.
(3)①能与平行.
若,如图2,则,
即,,而,
.
②不能与垂直.
若,延长交于,如图3,
则.
.
.
又,,
,
,而,
不存在.
15. (15浙江宿迁24题解析)24.如图,在矩形中,,,点是边上的动点(点不与点,点重合),过点作直线,交边于点,再把沿着动直线对折,点的对应点是点,设的长度为,与矩形重叠部分的面积为.
(1)求的度数;
(2)当取何值时,点落在矩形的边上?
(3)①求与之间的函数关系式;
②当取何值时,重叠部分的面积等于矩形面积的?
D
Q
C
B
P
R
A
(第24题)
B
A
D
C
(备用图1)
B
A
D
C
(备用图2)
二.旋转类
1. (15湖南常德26题)如图9,在直线上摆放有△ABC和直角梯形DEFG,且CD=6㎝;在△ABC中:∠C=90O,∠A=300,AB=4㎝;在直角梯形DEFG中:EF//DG,∠DGF=90O ,DG=6㎝,DE=4㎝,∠EDG=600。解答下列问题:
(1)旋转:将△ABC绕点C顺时针方向旋转900,请你在图中作出旋转后的对应图形
△A1B1C,并求出AB1的长度;
(2)翻折:将△A1B1C沿过点B1且与直线垂直的直线翻折,得到翻折后的对应图形
△A2B1C1,试判定四边形A2B1DE的形状?并说明理由;
(3)平移:将△A2B1C1沿直线向右平移至△A3B2C2,若设平移的距离为x,△A3B2C2与直角梯形重叠部分的面积为y,当y等于△ABC面积的一半时,x的值是多少?
A
B
C
D
E
F
G
图9
(15湖南常德26题解析)
解:(1)在△ABC中由已知得:BC=2,AC=AB×cos30°=,
∴AB1=AC+C B1=AC+CB=.……………………………………2分
(2)四边形A2B1DE为平行四边形.理由如下:
∵∠EDG=60°,∠A2B1C1=∠A1B1C=∠ABC=60°,∴A2B1∥DE
又A2B1=A1B1=AB=4,DE=4,∴A2B1=DE,故结论成立.………………4分
(3)由题意可知:
S△ABC=,
① 当或时,y=0
此时重叠部分的面积不会等于△ABC的面积的一半……………5分
②当时,直角边B2C2与等腰梯形的下底边DG重叠的长度为DC2=C1C2-DC1=(x-2)㎝,则y=,
当y= S△ABC= 时,即 ,
解得(舍)或.
∴当时,重叠部分的面积等于△ABC的面积的一半.
③当时,△A3B2C2完全与等腰梯形重叠,即……………7分
④当时,B2G=B2C2-GC2=2-(-8)=10-
则y=,
当y= S△ABC= 时,即 ,
解得,或(舍去).
∴当时,重叠部分的面积等于△ABC的面积的一半.………9分
由以上讨论知,当或时, 重叠部分的面积等于△ABC的面积的一半.………10分
2. (广西玉林卷)在矩形中,,,以为坐标原点,所在的直线为轴,建立直角坐标系.然后将矩形绕点逆时针旋转,使点落在轴的点上,则和点依次落在第二象限的点上和轴的点上(如图).
(1)求经过三点的二次函数解析式;
(2)设直线与(1)的二次函数图象相交于另一点,试求四边形的周长.
(3)设为(1)的二次函数图象上的一点,,求点的坐标.
C
B
D
E
F
G
A
[解] (1)解:由题意可知,,.
,,.
设经过三点的二次函数解析式是.
把代入之,求得. 3分
所求的二次函数解析式是:
.
(2)解:由题意可知,四边形为矩形.
,且.
直线与二次函数图象的交点的坐标为,
.
与与关于抛物线的对称轴对称,
.
四边形的周长
.
C
B
D
E
F
G
A
M
H
(3)解法1:设交轴于.
,
,
即.
,于是.
设直线的解析式为.
把,代入之,
得解得
.
联合一次,二次函数解析式组成方程组
解得或(此组数为点坐标)
所求的点坐标为.
解法2:过作轴于.由,得.
设所求点的横坐标为,则纵坐标为.
,,
.
,
,
.
解之,得或.
经检验可知,是原方程的根;是原方程的增根,故应舍去.
当时,.
所求的点坐标为.
[点评]此题的综合性较强,考查的知识点较多,但是解法较多,使试题的切入点也较多,很容易入题。
3. (14南京市) 27.在平面内,先将一个多边形以点为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为,并且原多边形上的任一点,它的对应点在线段或其延长线上;接着将所得多边形以点为旋转中心,逆时针旋转一个角度,这种经过和旋转的图形变换叫做旋转相似变换,记为,其中点叫做旋转相似中心,叫做相似比,叫做旋转角.
(1)填空:
①如图1,将以点为旋转相似中心,放大为原来的2倍,再逆时针旋转,得到,这个旋转相似变换记为( , );
②如图2,是边长为的等边三角形,将它作旋转相似变换,得到,则线段的长为 ;
C
A
B
D
E
图1
A
B
C
D
E
图2
E
D
B
F
G
C
H
A
I
图3
(2)如图3,分别以锐角三角形的三边,,为边向外作正方形,,,点,,分别是这三个正方形的对角线交点,试分别利用与,与之间的关系,运用旋转相似变换的知识说明线段
与之间的关系.
解:(1)①,;
②;
(2)经过旋转相似变换,得到,此时,线段变为线段;
经过旋转相似变换,得到,此时,线段变为线段.
,,
,.
4. (15湖北恩施)六、(本大题满分12分)
24. 如图11,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.
(2)求m与n的函数关系式,直接写出自变量n的取值范围.
(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图12).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD+CE=DE.
G
y
x
图12
O
F
E
D
C
B
A
G
图11
F
E
D
C
B
A
(4)在旋转过程中,(3)中的等量关系BD+CE=DE是否始终成立,若成立,请证明,若不成立,请说明理由.
(15湖北恩施24题解析)六、(本大题满分12分)
24. 解:(1)∆ABE∽∆DAE, ∆ABE∽∆DCA 1分
∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°
∴∠BAE=∠CDA
又∠B=∠C=45°
∴∆ABE∽∆DCA 3分
(2)∵∆ABE∽∆DCA
∴
由依题意可知CA=BA=
∴
∴m= 5分
自变量n的取值范围为1