• 852.50 KB
  • 2021-05-10 发布

中考数学试题汇编之29梯形试题及答案

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2010年中考试题专题之29-梯形试题及答案 一、选择题 ‎1.(2009年鄂州)已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移 ‎ 动,则当PA+PD取最小值时,△APD中边AP上的高为( )‎ A、 B、 C、 D、3‎ ‎2. (2009年淄博市)如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上的一点P,若EF=3,则梯形ABCD的周长为( C )‎ A B C D E F P ‎(第8题)‎ A.9 ‎ B.10.5‎ C.12 ‎ D.15‎ ‎3.(2009年齐齐哈尔市)梯形中,,,,,,则的长为( )‎ A.2 B.‎3 ‎C.4 D.5‎ ‎4. (2009年台湾)如图(十),等腰梯形ABCD中,=5,==7,‎ D B C L P A 圖(十)‎ ‎ =13,且之中垂线L交于P点,连接。‎ ‎ 求四边形ABPD的周长为何?‎ ‎ A. 24 B‎.25 ‎‎ C. 26 D.27 ‎ ‎5. (2009年重庆市江津区)在△ABC中,BC=10,B1 、C1分别是图①中AB、AC的中点,在图②中,分别是AB,AC的三等分点,在图③中分别是AB、AC的10等分点,则的值是 ( )‎ A. 30 B. ‎45 C.55 D.60‎ ‎ ‎ ‎① ② ③‎ ‎6.(2009武汉)在直角梯形中,,为边上一点,,且.连接交对角线于,连接.下列结论:‎ ‎①; ②为等边三角形; ③; ④.‎ 其中结论正确的是( )‎ A.只有①② B.只有①②④ C.只有③④ D.①②③④‎ D C B E A H ‎7.(2009威海)在梯形ABCD中,AB∥CD,∠A=60°,∠B=30°,AD=CD=6,则AB的长度为(  )‎ A.9 B.‎12 ‎ C.18 D.‎ ‎8..(2009湖北省荆门市)等腰梯形ABCD中,E、F、G、H分别是各边的中点,则四边形EFGH的形状是( )‎ A.平行四边形 B.矩形 C.菱形 D.正方形 ‎9..(2009年广西钦州)如图,在等腰梯形ABCD中,AB=DC,AC、BD交于点O,则图中全等三角形共有( )B ‎ A.2对 B.3对 ‎ C.4对 D.5对 ‎10.(2009临沂)如图,在等腰梯形ABCD中,,对角线于点O,,垂足分别为E、F,设AD=a,BC=b,则四边形AEFD的周长是( )‎ A. B. ‎ C. D.‎ D C A B E F O ‎11.(2009年哈尔滨)如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A 恰好落在DC边上的点A´处,若∠A´BC=20°,则∠A´BD的度数为( ).‎ D A C B ‎(A)15° (B)20° (C) 25° (D)30°‎ ‎12.(2009年遂宁)如图,在梯形ABCD中,AB//DC,∠D=90o,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是 ‎ A.2 B.4‎ C.8 D.1‎ ‎13.(2009年茂名市)(2009年茂名)6.杨伯家小院子的四棵小树刚好在其梯形院子 各边的中点上,若在四边形种上小草,则这块草地的形状是( )‎ A.平行四边形     B.矩形 C.正方形    D.菱形 A D H G C F B E ‎14. (2009年达州)如图1,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,以下四个结论:① ,②OA=OD ,③,④S=S,其中正确的是 A. ①② ‎ B.①④ ‎ ‎ C.②③④ ‎ D.①②④‎ 二、填空题 ‎1.(2009 黑龙江大兴安岭)梯形中,, ,,,, ‎ 则的长为 . ‎ ‎【关键词】梯形、等腰梯形、直角梯形等概念 ‎【答案】3‎ ‎2.(2009年济宁市)在等腰梯形ABCD中,AD∥BC, AD=‎3cm, AB=‎4cm, ∠B=60°, 则下底BC的长为 cm .‎ A D C B E ‎(14题图)‎ ‎3. (2009宁夏)14.如图,梯形的两条对角线交于点,图中面积相等的三角形共有      对.‎ ‎4..(2009年南充)如图,等腰梯形ABCD中,,,则梯形ABCD 的周长是 .‎ D C A B ‎5.(2009年日照)如图,在四边形ABCD中,已知AB与CD不平行,∠ABD=∠ACD,请你添加一个条件: ,使得加上这个条件后能够推出AD∥BC且AB=CD. ‎ B C D A O ‎(第15题图)‎ ‎6.(2009年泸州)如图4,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=3,BC=4,则梯形ABCD的面积是 ‎ ‎7. (2009年四川省内江市)如图,梯形ABCD中,AD//BC,两腰BA与CD的延长线相交于P,PE⊥BC,AD=2,BC=5,EF=3,则PF=____________。‎ ‎8.(2009年陕P A D B F C 西省) 14.如图,在梯形ABCD中,DC∥AB,DA=CB,若AB=10,DC=4,tanA=2,则这个梯形的面积是______.‎ ‎9.(2009山西省太原市)如图,在等腰梯形中,,=4=,=45°.直角三角板含45°角的顶点在边上移动,一直角边始终经过点,斜边与交于点.若为等腰三角形,则的长等于 . ‎ D B C A E F ‎10.(2009年宁波市)如图,梯形ABCD中,,,作交于点E,若A B C D E ,,则CD的长是 .‎ B C D A O ‎(第15题图)‎ ‎11.(2009东营)如图,在四边形ABCD中,已知AB与CD不平行,∠ABD=∠ACD,请你添加一个条件: ,使得加上这个条件后能够推出AD∥BC且AB=CD. ‎ ‎ ‎ ‎12.(2009年济宁市)在等腰梯形ABCD中,AD∥BC, AD=‎3cm, AB=‎4cm, ∠B=60°, 则下底BC的长为 cm .‎ 三、解答题 ‎1. (2009年重庆市江津区)如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60º.‎ ‎(1)求证:AB⊥AC;‎ ‎(2)若DC=6,求梯形ABCD的面积 .‎ ‎23题图 ‎2. (2009年北京市)如图,在梯形ABCD中,AD∥BC,∠B=,∠C=,‎ AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长. ‎ ‎3.(2009仙桃)如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D 出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.‎ ‎(1)求NC,MC的长(用t的代数式表示);‎ ‎(2)当t为何值时,四边形PCDQ构成平行四边形?‎ ‎(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;‎ ‎ (4)探究:t为何值时,△PMC为等腰三角形?‎ ‎4.(2009年桂林市、百色市)如图:在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于O.‎ ‎ (1)图中共有 对全等三角形; ‎ ‎(2)写出你认A D O C B 为全等的一对三角形,并证明. ‎ ‎5. (2009年上海市)21.如图4,在梯形中, AD∥BC,AB=DC=8,∠B=60°,BC=12,联结.‎ ‎(1)求的值;‎ ‎(2)若分别是的中点,联结,求线段的长.‎ A D C 图4‎ B ‎6.(2009年杭州市)如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P.‎ ‎(1)求证:AF=BE;‎ D E F P B A ‎(第22题)‎ C ‎(2)请你猜测∠BPF的度数,并证明你的结论.‎ ‎7.(2009泰安)如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD。‎ (1) 求证:BE=AD;‎ (2) 求证:AC是线段ED的垂直平分线;‎ (3) ‎△DBC是等腰三角形吗?并说明理由。‎ ‎8.(2009江西)如图1,在等腰梯形中,,是的中点,过点作交于点.,.‎ ‎(1)求点到的距离;‎ ‎(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设.‎ ‎①当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由;‎ ‎②当点在线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.‎ A D E B F C 图4(备用)‎ A D E B F C 图5(备用)‎ A D E B F C 图1‎ 图2‎ A D E B F C P N M 图3‎ A D E B F C P N M ‎(第25题)‎ ‎9.(2009年烟台市)如图,直角梯形ABCD中,,,且,过点D作,交的平分线于点E,连接BE.‎ ‎(1)求证:;‎ ‎(2)将绕点C,顺时针旋转得到,连接EG..‎ 求证:CD垂直平分EG.‎ ‎(3)延长BE交CD于点P.‎ 求证:P是CD的中点.‎ A D G E C B ‎10.【2009南宁市】如图14,要设计一个等腰梯形的花坛,花坛上底长米,下底长米,上下底相距米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为米.‎ ‎(1)用含的式子表示横向甬道的面积;‎ ‎(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;‎ ‎(3)根据设计的要求,甬道的宽不能超过‎6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?‎ ‎11.(2009年益阳市)如图9,在梯形ABCD中,AB∥CD,BD⊥AD,BC=CD,∠A=60°,CD=‎2cm.‎ ‎(1)求∠CBD的度数;‎ ‎(2)求下底AB的长.‎ A B C 图9‎ D ‎60°‎ A D C B E ‎12.(2009年漳州)如图,在等腰梯形中,为底的中点,连结、.求证:.‎ ‎13.(2009年益阳市)如图9,在梯形ABCD中,AB∥CD,BD⊥AD,BC=CD,∠A=60°,CD=‎2cm.‎ ‎(1)求∠CBD的度数;‎ ‎(2)求下底AB的长.‎ A B C 图9‎ D ‎60°‎ ‎14. (2009年重庆市江津区)如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60º.‎ ‎(1)求证:AB⊥AC;‎ ‎(2)若DC=6,求梯形ABCD的面积 .‎ ‎23题图 ‎15.(09湖南怀化)如图12,在直角梯形OABC中, OA∥CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q也同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交轴于点F.设动点P、Q运动时间为t(单位:秒).‎ ‎(1)当t为何值时,四边形PABQ是等腰梯形,请写出推理过程;‎ ‎(2)当t=2秒时,求梯形OFBC的面积;‎ ‎(3)当t为何值时,△PQF是等腰三角形?请写出推理过程.‎ ‎16.(09湖南邵阳)如图(七),在梯形中,,,,将延长至点,使.‎ ‎(1)求的度数;‎ ‎(2)求证:为等腰三角形.‎ D A F B C 图七 ‎17.(2009年黄石市)正方形在如图所示的平面直角坐标系中,在轴正半轴上,在轴的负半轴上,交轴正半轴于交轴负半轴于,,抛物线过三点.‎ ‎(1)求抛物线的解析式;)‎ ‎(2)是抛物线上间的一点,过点作平行于轴的直线交边于,交所在直线于,若,则判断四边形的形状;‎ ‎(3)在射线上是否存在动点,在射线上是否存在动点,使得且,若存在,请给予严格证明,若不存在,请说明理由.‎ O y x B E A D C F ‎18.(2009年山西省)有一水库大坝的横截面是梯形,为水库的水面,点在上,某课题小组在老师的带领下想测量水的深度,他们测得背水坡的长为‎12米,迎水坡上的长为‎2米,求水深.(精确到‎0.1米,)‎ A B C D E F 水深 ‎19.(2009 黑龙江大兴安岭)已知:在中,,动点绕的顶点逆时针旋转,且,连结.过、的中点、作直线,直线与直线、分别相交于点、.‎ 图2‎ 图3‎ 图1‎ ‎(N)‎ ‎(1)如图1,当点旋转到的延长线上时,点恰好与点重合,取的中点,连结、,根据三角形中位线定理和平行线的性质,可得结论(不需证明).‎ ‎(2)当点旋转到图2或图3中的位置时,与有何数量关系?请分别写出猜想,并任选一种情况证明.‎ ‎20.(2009年邵阳市)如图,在梯形ABCD中,AD//BC,AB=AD=DC,AC⊥AB,延长CB至F,使BF=CD.‎ (1) 求∠ABC的度数 (2) 求证:△CAF为等腰三角形。‎ F D C B A ‎21.(2009青海)如图9,梯形中,,,为梯形外一点,分别交线段于点,且.‎ ‎(1)图中除了外,请你再找出其余三对全等的三角形(不再添加辅助线).‎ D C F E A B P ‎(2)求证:.‎ ‎22.(2009眉山)在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连结EF、EC、BF、CF。。‎ ‎⑴判断四边形AECD的形状(不证明);‎ ‎⑵在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明。‎ ‎⑶若CD=2,求四边形BCFE的面积。‎