- 1.88 MB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2012年全国各地中考数学真题分类汇编
第25章 多边形与平行四边形
一.选择题
1.(2012•杭州)已知平行四边形ABCD中,∠B=4∠A,则∠C=( )
A.18° B.36° C.72° D.144°
考点:
平行四边形的性质;平行线的性质。
专题:
计算题。
分析:
关键平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C.
解答:
解:
∵四边形ABCD是平行四边形,
∴∠C=∠A,BC∥AD,
∴∠A+∠B=180°,
∵∠B=4∠A,
∴∠A=36°,
∴∠C=∠A=36°,
故选B.
点评:
本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大.
2.(2012•中考)如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是( )
A.平行四边形 B.矩形 C.菱形 D.梯形
解答:
解:∵别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,
∴AD=BC AB=CD
∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).
故选A.
点评:
本题考查了平行四边形的判定,解题的关键是熟记平行四边形的判定方法.
3.(2012泰安)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为( )
A.53° B.37° C.47° D.123°
考点:平行四边形的性质。
解答:解:∵在平行四边形ABCD中,过点C的直线CE⊥AB,
∴∠E=90°,
∵∠EAD=53°,
∴∠EFA=90°﹣53°=37°,
∴∠DFC=37
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠BCE=∠DFC=37°.
故选B.
4.(2012•聊城)如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是( )
A.DF=BE B.AF=CE C.CF=AE D.CF∥AE
考点:
平行四边形的性质;全等三角形的判定。
分析:
根据平行四边形的性质和全等三角形的判定方法逐项分析即可.
解答:
解:A、当DF=BE时,有平行四边形的性质可得:AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;
B、当AF=CE时,有平行四边形的性质可得:BE=DF,AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;
C、当CF=AE时,有平行四边形的性质可得:AB=CD,∠B=∠D,利用SSA不能可判定△CDF≌△ABE;
D、当CF∥AE时,有平行四边形的性质可得:AB=CD,∠B=∠D,∠AEB=∠CFD,利用AAS可判定△CDF≌△ABE.
故选C.
点评:
本题考查了平行四边形的性质和重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.
5.(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是( )
A.26 B.25 C.21 D.20
考点:
等腰梯形的性质;平行四边形的判定与性质。
分析:
由BC∥AD,DE∥AB,即可得四边形ABED是平行四边形,根据平行四边形的对边相等,即可求得BE的长,继而求得BC的长,由等腰梯形ABCD,可求得AB的长,继而求得梯形ABCD的周长.
解答:
解:∵BC∥AD,DE∥AB,
∴四边形ABED是平行四边形,
∴BE=AD=5,
∵EC=3,
∴BC=BE+EC=8,
∵四边形ABCD是等腰梯形,
∴AB=DC=4,
∴梯形ABCD的周长为:AB+BC+CD+AD=4+8+4+5=21.
故选C.
点评:
此题考查了等腰梯形的性质与平行四边形的判定与性质.此题比较简单,注意判定出四边形ABED是平行四边形是解此题的关键,同时注意数形结合思想的应用.
6.(2012•德阳)如图,点D是△ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合).以BD、BF为邻边作平行四边形BDEF,又APBE(点P、E在直线AB的同侧),如果BD=AB,那么△PBC的面积与△ABC面积之比为( )
A.
B.
C.
D.
考点:
平行四边形的判定与性质。
分析:
首先过点P作PH∥BC交AB于H,连接CH,PF,易得四边形APEB,BFPH是平行四边形,又由四边形BDEF是平行四边形,设BD=a,则AB=4a,可求得BH=PF=3a,又由S△HBC=S△PBC,S△HBC:S△ABC=BH:AB,即可求得△PBC的面积与△ABC面积之比.
解答:
解:过点P作PH∥BC交AB于H,连接CH,PF,
∵APBE,
∴四边形APEB是平行四边形,
∴PE∥AB,PE=AB,
∵四边形BDEF是平行四边形,
∴EF∥BD,EF=BD,
即EF∥AB,
∴P,E,F共线,
设BD=a,
∵BD=AB,
∴PE=AB=4a,
则PF=PE﹣EF=3a,
∵PH∥BC,
∴S△HBC=S△PBC,
∵PF∥AB,
∴四边形BFPH是平行四边形,
∴BH=PF=3a,
∵S△HBC:S△ABC=BH:AB=3a:4a=3:4,
∴S△PBC:S△ABC=3:4.
故选D.
点评:
此题考查了平行四边形的判定与性质与三角形面积比的求解方法.此题难度较大,注意准确作出辅助线,注意等高三角形面积的比等于其对应底的比.
7.(2012安顺)一个多边形的内角和是900°,则这个多边形的边数是( )
A. 6 B. 7 C. 8 D. 9
考点:多边形内角与外角。
解答:解:设这个多边形的边数为n,
则有(n﹣2)180°=900°,
解得:n=7,
∴这个多边形的边数为7.
故选B.
8.(2012肇庆)一个多边形的内角和与外角和相等,则这个多边形是
A.四边形 B.五边形
C.六边形 D.八边形
【解析】多边形的内角和为(n-2)×180°,外角和为360°,列方程很容易求出边数为4.
【答案】A
【点评】本题考查了多边形内角和定理及外角和的应用.对多边形考查,其内角和公式是基础,公式的应用通常有已知边数求内角和或已知内角和求边数.学习的关键是对公式意义的理解.
9.(2012无锡)若一个多边形的内角和为1080°,则这个多边形的边数为( )
A. 6 B. 7 C. 8 D. 9
考点:多边形内角与外角。
分析:首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案.
解答:解:设这个多边形的边数为n,
根据题意得:180(n﹣2)=1080,
解得:n=8.
故选C.
点评:此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.
10.(2012北京)正十边形的每个外角等于( )
A. B. C. D.
【解析】多边形外角和为360°,因为是正十边形,360°÷10=36°
【答案】B
【点评】本题考查了多边形问题,多边形的外角和为360°,正多边形的每个内角相等,每个外角也相等,设每个外角为x°,10x=360,x=10°
11. (2012湛江)一个多边形的内角和是720°,这个多边形的边数是( )
A.4 B.5 C.6 D.7
解析:∵多边形的内角和公式为(n﹣2)•180°,
∴(n﹣2)×180°=720°,
解得n=6,
∴这个多边形的边数是6.
故选C.
12.(2012玉林)正六边形的每个内角都是( )
A.60° B.80° C.100° D.120°
分析:先利用多边形的内角和公式(n-2)•180°求出正六边形的内角和,然后除以6即可;
或:先利用多边形的外角和除以正多边形的边数,求出每一个外角的度数,再根据相邻的内角与外角是邻补角列式计算.
解答:(6-2)•180°=720°,所以,正六边形的每个内角都是720°÷6=120°,
或:360°÷6=60°,180°-60°=120°.故选D.
点评:本题考查了多边形的内角与外角,利用正多边形的外角度数、边数、外角和三者之间的关系求解是此类题目常用的方法,而且求解比较简便.
13.(2012柳州)如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,所转过的度数是( A )
A.60° B.72° C.108° D.120°
【考点】旋转的性质;正多边形和圆.
【分析】由六边形ABCDEF是正六边形,即可求得∠AFE的度数,又由邻补角的定义,求得∠E′FE的度数,由将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,可得∠EFE′是旋转角,继而求得答案.
【解答】解:∵六边形ABCDEF是正六边形,
∴∠AFE=180°×(6-2) =120°,
∴∠EFE′=180°-∠AFE=180°-120°=60°,
∵将正六边形ABCDEF绕点F顺时针旋转后到达A′B′C′D′E′F′的位置,
∴∠EFE′是旋转角,
∴所转过的度数是60°.
故选A.
【点评】此题考查了正六边形的性质、旋转的性质以及旋转角的定义.此题难度不大,注意找到旋转角是解此题的关键.
二.填空题
14.(2012义乌市)正n边形的一个外角的度数为60°,则n的值为 6 .
考点:多边形内角与外角。
解答:解:∵正n边形的一个外角的度数为60°,
∴其内角的度数为:180°﹣60°=120°,
∴=120°,解得n=6.
故答案为:6.
15.(2012•烟台)▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1).则点C的坐标为 .
考点:
平行四边形的性质;坐标与图形性质。
专题:
计算题。
分析:
画出图形,根据平行四边形性质求出DC∥AB,DC=AB=3,根据D的纵坐标和CD=3即可求出答案.
解答:
解:
∵平行四边形ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),
∴AB=CD=2﹣(﹣1)=3,DC∥AB,
∴C的横坐标是3,纵坐标和D的纵坐标相等,是1,
∴C的坐标是(3,1),
故答案为:(3,1).
点评:
本题考查了平行四边形的性质和坐标与图形性质的应用,能根据图形进行推理和求值是解此题的关键,本题主要考查学生的观察能力,用了数形结合思想.
16.(2012•烟台)如图为2012年伦敦奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为 度(不取近似值)
考点:
多边形内角与外角。
分析:
根据正多边形的定义可得:正多边形的每一个内角都相等,则每一个外角也都相等,首先由多边形外角和为360°可以计算出正七边形的每一个外角度数,再用180°﹣一个外角的度数=一个内角的度数.
解答:
解:正七边形的每一个外角度数为:360°÷7=()°
则内角度数是:180°﹣()°=()°,
故答案为:.
点评:
此题主要考查了正多边形的内角与外角,关键是掌握正多边形的每一个内角都相等.
17.(2012北海)16.一个多边形的每一个外角都等于18°,它是___________边形。
【解析】根据多边形外角和为360°,而多边形的每一个外角都等于18°,所以它的边数为
【答案】二十
【点评】本题考查的是多边形的外角和为360°,外角个数和边数相同。难度较小。
18.(2012铜仁)若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .
【考点】:多边形内角与外角。
【答案】:9
【解析】:解:360÷40=9,即这个多边形的边数是9.
19.(2012•梅州)正六边形的内角和为 720 度.
考点:
多边形内角与外角
分析:
由多边形的内角和公式:180°(n﹣2),即可求得正六边形的内角和.
解答:
解:正六边形的内角和为:180°×(6﹣2)=180°×4=720°.
故答案为:720.
点评:
此题考查了多边形的内角和公式.此题比较简单,解题的关键是熟记公式.
20.(2012•佛山)一个多边形的内角和为540°,则这个多边形的边数是 ;
解析:5 根据多边形的内角和公式得:,解得
考查知识:多边形的内角和公式的运用
21.(2012•德阳)已知一个多边形的内角和是外角和的,则这个多边形的边数是 5 .
考点:
多边形内角与外角。
分析:
根据内角和等于外角和之间的关系列出有关边数n的方程求解即可.
解答:
解:设该多边形的边数为n
则(n﹣2)×180=×360
解得:n=5
故答案为5.
点评:
本题考查了多边形的内角与外角,解题的关键是牢记多边形的内角和与外角和.
22.(2012•广安)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 240 度.
考点:
多边形内角与外角。
专题:
数形结合。
分析:
利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.
解答:
解:∵四边形的内角和为(4﹣2)×180°=360°,
∴∠B+∠C+∠D=360°﹣60°=300°,
∵五边形的内角和为(5﹣2)×180°=540°,
∴∠1+∠2=540°﹣300°=240°,
故答案为240.
点评:
考查多边形的内角和知识;求得∠B+∠C+∠D的度数是解决本题的突破点.
23.(2012南京)如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角,若∠A=1200,则∠1+∠2+∠3+∠4= .
解析:由于多边形的外角和均为3600,因而∠1、∠2、∠3、∠4 及
其∠A的领补角这五个角的和为3600,∠A的领补角为600,所
以∠1+∠2+∠3+∠4=3600-600=3000.
答案:3000.
点评:多边形的外角和均为3600,常用这一结论求多边形的边数、外
角的度数等问题.
24. (2012安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边
形与其内部小正方形的边长都为,则阴影部分的面积为( )
A.2 B. 3
C. 4 D.5
解析:图案中间的阴影部分是正方形,面积是a2,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a的正方形的一半,它的面积用对角线积的一半来计算.
解答:解: 故选A.
点评:本题考查了正多边形的性质,关键要找出正八边形和原来正方形的关系,尽量用所给数据来计算.
26.(2012河北)18、用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图9-1,用n个全等的正六边形按这种方式拼接,如图9-2,若围成一圈后中间也形成一个正多边形,则n的值为_____________________.
【解析】根据两个图形可以断定,所围成的图形肯定是正多边形,由观察的内角120°,可以断定n的值。
【答案】6
【点评】作本题,需要一定的观察能力,判断能力和猜测的能力,是一个拔高题,但题目本身不太难。
27.(2012成都)如图,将ABCD的一边BC延长至E,若∠A=110°,则∠1=________.
考点:平行四边形的性质。
解答:解:∵平行四边形ABCD的∠A=110°,
∴∠BCD=∠A=110°,
∴∠1=180°﹣∠BCD=180°﹣110°=70°.
故答案为:70°.
28.(2012•衢州)如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为a,则平行四边形ABCD的面积为 12a (用a的代数式表示).
考点:
相似三角形的判定与性质;平行四边形的性质。
分析:
由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AB∥CD,AD∥BC,AB=CD,然后由平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似,即可判定△DEF∽△CEB,△DEF∽△ABF,又由相似三角形面积的比等于相似比的平方,即可求得答案.
解答:
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,AB=CD,
∴△DEF∽△CEB,△DEF∽△ABF,
∴,,
∵CD=2DE,
∴DE:CE=1:3,DE:AB=1:2,
∵S△DEF=a,
∴S△CBE=9a,S△ABF=4a,
∴S四边形BCDF=S△CEB﹣S△DEF=8a,
∴S▱ABCD=S四边形BCDF+S△ABF=8a+4a=12a.
故答案为:12a.
点评:
此题考查了相似三角形的判定与性质与平行四边形的性质.此题难度适中,注意数形结合思想的应用,注意相似三角形面积的比等于相似比的平方定理的应用.
29.(2012•湘潭)如图,在▱ABCD中,点E在DC上,若EC:AB=2:3,EF=4,则BF= 6 .
考点:
相似三角形的判定与性质;平行四边形的性质。
分析:
先根据平行四边形的性质得出∠CAB=∠ACD,∠ABE=∠BEC,故可得出△ABF∽△CEF,再由相似三角形的对应边成比例即可得出结论.
解答:
解:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠CAB=∠ACD,∠ABE=∠BEC,
∴△ABF∽△CEF,
∴=,即=,解得BF=6.
故答案为:6.
点评:
本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.
三.解答题
30. (2012黄石)如图(8),已知在平行四边形中,.
A
B
C
D
E
F
图(8)
求证:.
【考点】平行四边形的性质;平行线的性质;全等三角形的判定与性质.
【专题】证明题.
【分析】根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,证△ADE≌△CBF,推出∠DAE=∠BCF即可.
【解答】证明:∵四边形ABCD为平行四边形
∴AD∥BC,且AD=BC
∴∠ADE=∠BCF ……………………………………………………2分
又∵BE=DF, ∴BF=DE ………………………………………………1分
∴△ADE≌△CBF ……………………………………………………2分
∴∠DAE=∠BCF ……………………………………………………2分
【点评】本题考查了平行四边形性质,平行线性质,全等三角形的性质和判定的应用,关键是求出证出△ADE和△CBF全等的三个条件,主要考查学生的推理能力.
31.(2012广安)如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.
考点:
平行四边形的性质;全等三角形的判定。
专题:
证明题。
分析:
由四边形ABCD是平行四边形,利用平行四边形的性质,即可得AB=CD,AB∥CD,又由平行线的性质,即可得∠D=∠EAF,然后由BE=AD,AF=AB,求得AF=CD,DF=AE,继而利用SAS证得:△AEF≌△DFC.
解答:
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠D=∠EAF,
∵AF=AB,BE=AD,
∴AF=CD,AD﹣AF=BE﹣AB,
即DF=AE,
在△AEF和△DFC中,
,
∴△AEF≌△DFC(SAS).
点评:
此题考查了平行四边形的性质与全等三角的判定.此题难度不大,注意数形结合思想的应用.
32.(2012济南)(1)如图1,在▱ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.
【考点】平行四边形的性质;全等三 角形的判定与性质;
【专题】证明题.
【分析】(1)根据四边形ABCD是平行四边形,利用平行四边形的性质得到一对边和一对角的对应相等,在加上已知的一对边的相等,利用“SAS”,证得△ADE≌△CBF,最后根据全等三角形的对应边相等即可得证;
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,∠A=∠C,
在△ADE和△CBF中,
AD=CB ,∠A=∠C ,AE=CF,
∴△ADE≌△CBF(SAS),
∴DE=BF;
【点评】此题考查了平行四边形的性质以及全等三角形的性质与判定,熟练掌握定理与性质是解本题的关键.
33.(2012泰州)如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.
(第23题图)
【解析】要证四边形ABCD是平行四边形.只要证AD=CB,需证△AED≌△FCB,结合易知证明就较为简单.
【答案】∵AD∥BC,∴∠ADE=∠CBF,又∠DAE=∠BCF=900,∴△AED≌△FCB,∴AD=BC,∴四边形ABCD是平行四边形.
【点评】本题是一个简单的考查平行四边形的判定的证明题,平行四边形的相关知识是初中阶段必须掌握的.这类中考题目一般并不难,侧重考查对课本知识的掌握和理解运用.
34.(2012广东)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.
求证:四边形ABCD是平行四边形.
考点:平行四边形的判定;全等三角形的判定与性质。
解答:证明:∵AB∥CD,
∴∠ABO=∠CDO,
在△ABO与△CDO中,
∵,
∴△ABO≌△CDO,
∴AB=CD,
∴四边形ABCD是平行四边形.
35.(2012临沂)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.
(1)求证:四边形BCEF是平行四边形,
(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.
考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;平行四边形的判定;菱形的判定。
解答:(1)证明:∵AF=DC,
∴AF+FC=DC+FC,即AC=DF.
在△ABC和△DEF中,
,
∴△ABC≌DEF(SAS),
∴BC=EF,∠ACB=∠DFE,
∴BC∥EF,
∴四边形BCEF是平行四边形.
(2)解:连接BE,交CF与点G,
∵四边形BCEF是平行四边形,
∴当BE⊥CF时,四边形BCEF是菱形,
∵∠ABC=90°,AB=4,BC=3,
∴AC==5,
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,
∴△ABC∽△BGC,
∴=,
即=,
∴CG=,
∵FG=CG,
∴FC=2CG=,
∴AF=AC﹣FC=5﹣=,
∴当AF=时,四边形BCEF是菱形.
36.(2012•衢州)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系?并对你的猜想加以证明.
考点:
平行四边形的性质;全等三角形的判定与性质。
专题:
探究型。
分析:
由四边形ABCD是平行四边形,即可得AB∥CD,AB=CD,然后利用平行线的性质,求得∠ABE=∠CDF,又由BE=DF,即可证得△ABE≌△CDF,继而可得AE=CF.
解答:
解:猜想:AE=CF.
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠ABE=∠CDF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS),
∴AE=CF.
点评:
此题考查了平行四边形的性质与全等三角形的判定与性质.此题比较简单,注意掌握平行四边形的对边平行且相等,注意数形结合思想的应用.
37.(2012上海)己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD交于点G.
(1)求证:BE=DF;
(2)当=时,求证:四边形BEFG是平行四边形.
考点:平行线分线段成比例;全等三角形的判定与性质;平行四边形的判定;菱形的性质。
解答:证明:(1)∵四边形ABCD是菱形,
∴AB=AD,∠ABC=∠ADF,
∵∠BAF=∠DAE,
∴∠BAF﹣∠EAF=∠DAE﹣∠EAF,
即:∠BAE=∠DAF,
∴△BAE≌△DAF
∴BE=DF;
(2)∵=,
∴
∴FG∥BC
∴∠DGF=∠DBC=∠BDC
∴DF=GF
∴BE=GF
∴四边形BEFG是平行四边形.
38. (2012湛江)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;
(2)四边形BFDE是平行四边形.
解:证明:(1)∵四边形ABCD是平行四边形,
∴∠A=∠C,AB=CD,
在△ABE和△CDF中,
∵,
∴△ABE≌△CDF(SAS);
(2)∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵AE=CF,
∴AD﹣AE=BC﹣CF,
即DE=BF,
∴四边形BFDE是平行四边形.
39.(2012无锡)如图,在▱ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:∠BAE=∠CDF.
考点:平行四边形的性质;全等三角形的判定与性质。
专题:证明题。
分析:首先根据平行四边形的性质可得AB=DC,AB∥DC,再根据平行线的性质可得∠B=∠DCF,即可证明△ABE≌△DCF,再根据全等三角形性质可得到结论.
解答:证明:∵四边形ABCD是平行四边形,
∴AB=DC,AB∥DC,
∴∠B=∠DCF,
在△ABE和△DCF中,,
∴△ABE≌△DCF(SAS),
∴∠BAE=∠CDF.
点评:此题主要考查了平行四边形的性质,全等三角形的判定与性质,关键是找到证明△ABE≌△DCF的条件.
2011年全国各地中考数学真题分类汇编
第25章 多边形与平行四边形
一、选择题
1. (2011安徽,6,4分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是( )
A.7 B.9 C.10 D.11
【答案】D
2. (2011广东广州市,2,3分)已知□ABCD的周长为32,AB=4,则BC=( ).
A.4 B.12 C.24 D.28
【答案】B
3. (2011山东威海,3,3分)在□ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=( )
A.1:2 B.1:3 C.2:3 D.2:5
【答案】A
4. (2011四川重庆,9,4分)下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形一共有1个平行四边形,第②个图形一共有5个平行四边形,第③个图形一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数为( )
……
图① 图② 图③ 图④
A.55 B.42 C.41 D.29
【答案】C
5. (2011江苏泰州,7,3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有
A.1组 B.2组 C.3组 D.4组
【答案】C
6. (2011湖南邵阳,7,3分)如图(二)所示,中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是()
A.AC⊥BD B.AB=CD
C. BO=OD D.∠BAD=∠BCD
【答案】A.
7. (2011重庆市潼南,9,4分)如图,在平行四边形 ABCD中(AB≠BC),直线EF
经过其对角线的交点O,且分别交AD、BC于点M、
N,交BA、DC的延长线于点E、F,下列结论:
①AO=BO;②OE=OF; ③△EAM∽△EBN;
④△EAO≌△CNO,其中正确的是
A. ①② B. ②③ C. ②④ D.③④
【答案】B
8. (2011广东东莞,5,3分)正八边形的每个内角为( )
A.120° B.135° C.140° D.144°
【答案】B
9. (2011浙江省,8,3分)如图,在五边形ABCDE中,∠BAE=120°, ∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为( )
A. 100° B.110° C. 120° D. 130°
【答案】C
10. (2011台湾台北,33)图(十五)为一个四边形,其中与交于E点,且两灰色区域的面积相等。若=11,=10,则下列关系何者正确?
A. B. C.> D.<
【答案】A
11. (2011宁波市,7,3分)一个多边形的内角和是720°,这个多边形的边数是
A. 4 B. 5 C. 6 D. 7
【答案】C
12. (2011广东汕头,5,3分)正八边形的每个内角为( )
A.120° B.135° C.140° D.144°
【答案】B
13. (2011内蒙古乌兰察布,10,3分)如图,已知矩形ABCD ,一条直线将该矩形 ABCD 分割成两个多边形,若这两个多边形的内角和分别为 M 和 N ,则 M + N 不可能是( )
A . 360 B . 540 C. 720 D . 630
A
C
B
D
第10题图
【答案】D
14. (2011广东湛江2,3分)四边形的内角和为
A B C D
【答案】B
15. (2011广东省,5,3分)正八边形的每个内角为( )
A.120° B.135° C.140° D.144°
【答案】B
二、填空题
1. (2011浙江金华,15,4分)如图,在□ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是 .
【答案】2
2. (2011山东德州10,4分)如图,D,E,F分别为△ABC三边的中点,
则图中平行四边形的个数为___________.
A
B
C
D
E
F
第10题图
【答案】3
3. (2011浙江丽水,15,4分)如图,在□ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是 .
【答案】2
4. (2011江苏苏州,12,3分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AC、BD相交于点O.若AC=6,则线段AO的长度等于___________.
【答案】3
5. (2011山东聊城,14,3分)如图,在□ABCD中,AC、BD相交于点O,点E是AB的中点,OE=3cm,则AD的长是__________cm.
【答案】6
6. (2011山东临沂,18,3分)如图,□ ABCD中,E是BA延长线上一点,AB=AE,连结CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为 .
【答案】6
7. (2011湖南常德,4,3分)四边形的外角和为__________.
【答案】360°
8. (2011四川广安,16,3分)若凸边形的内角和为1260°,则从一个顶点出发引的对角线条数是____
【答案】6
三、解答题
1. (2011浙江义乌,18,6分)如图,已知E、F是□ABCD对角线AC上的两点,
且BE⊥AC,DF⊥AC.
F
E
A
B
C
D
(1)求证:△ABE≌△CDF;
(2)请写出图中除△ABE≌△CDF外其余两对全等
三角形(不再添加辅助线).
【答案】(1)∵四边形ABCD是平行四边形
∴AB=CD AB∥CD
∴∠BAE=∠FCD
又∵BE⊥AC DF⊥AC
∴∠AEB=∠CFD=90°
∴△ABE≌△CDF (AAS)
(2)①△ABC≌△CDA ②△BCE≌△DAF
2. (2011湖南常德,21,7分)如图5,已知四边形ABCD是平行四边形.
(1)求证:△MEF ∽△MBA;
(2)若AF,BE分别,∠CBA的平分线,求证DF=EC
A
图5
B
C
D
E
F
M
【答案】
(1) 证明:在□ABCD中,CD∥AB
∴∠MEF=∠MBA,∠MFE=∠MAB
∴△MEF ∽△MBA
(2) 证明:∵在□ABCD中,CD∥AB
∠DFA=∠FAB
又∵AF是∠DAB的平分线
∴∠DAF=∠FAB
∴∠DAF=∠DFA
∴AD=DF
同理可得EC=BC
∵在□ABCD中,AD=BC
∴DF=EC
3. (2011四川成都,20,10分) 如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.
(1)若BK=KC,求的值;
(2)连接BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=AD (),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.
【答案】解:(1)∵AB∥CD,BK=KC,∴==.
(2)如图所示,分别过C、D作BE∥CF∥DG分别交于AB的延长线于F、G三点,
∵BE∥DG,点E是AD的点,∴AB=BG;∵CD∥FG,CD∥AG,∴四边形CDGF是平行四边形,∴CD=FG;
∵∠ABE=∠EBC ,BE∥CF,∴∠EBC=∠BCF,∠ABE=∠BFC,∴BC=BF,
∴AB-CD=BG-FG=BF=BC,∴AB=BC+CD.
当AE=AD ()时,()AB=BC+CD.
4. (2011四川宜宾,17⑶,5分)如图,平行四边形ABCD的对角线AC、BD交于点O,E、F在AC上,G、H在BD上,AF=CE,BH=DG.
求证:GF∥HE.
H
A
(17(3)题图)
C
B
D
O
E
G
F
【答案】证明:∵平行四边形ABCD中,OA=OC,
由已知:AF=CE
AF-OA=CE-OC ∴OF=OE
同理得:OG=OH
∴四边形EGFH是平行四边形
∴GF∥HE
5. (2011江苏淮安,20,8分)如图,四边形ABCD是平行四边形,EF分别是BC、AD上的点,∠1=∠2.
求证:△ABE≌△CDF.
【答案】∵四边形ABCD是平行四边形,
∴∠B=∠D,AB=DC,
又∵∠1=∠2,
∴△ABE≌△CDF(ASA).
6. (2011四川凉山州,20,7分)如图,是平行四边形的对角线上的点,,请你猜想:线段与线段有怎样的关系?并对你的猜想加以证明。
B
C
D
E
F
A
20题图
【答案】猜想:。
证明: ∵四边形ABCD是平行四边形
∴,∥
∴
在和
∴≌
∴,
∴∥
即 。
7. (2011江苏无锡,21,8分)(本题满分8分)如图,在□ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.
求证:BE = DF.
B
C
D
A
E
F
【答案】证明:∵□ABCD中,AB = CD,AB // CD,…………………………………………(2分)
∴∠ABE = ∠CDF,……………………………………………………………(4分)
又∵∠BAE = ∠DCF,∴△ABE≌△CDF,………………………………(6分)
∴BE = DF.…………………………………………………………………(8分)
8. (2011湖南永州,21,8分)如图,BD是□ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.
求证:△ABE≌△CDF.
(第21题)
【答案】证明:□ABCD中,AB=CD,∠A=∠C, AB∥CD ∴∠ABD=∠CDB
∵∠ABE=∠ABD,∠CDF=∠CDB ∴∠ABE=∠CDF
在△ABE与△CDF中
∴△ABE≌△CDF.
2010年全国各地中考数学真题分类汇编
第25章 多边形与平行四边形
一、选择题
1.(2010江苏苏州)如图,在平行四边形ABCD中,E是AD边上的中点.若∠ABE=∠EBC,AB=2,
则平行四边形ABCD的周长是 ▲ .
【答案】12
2.(2010台湾)图(十)为一个平行四边形ABCD,其中H、G两点分别在、
上,^,^,且、、将ÐBAD分成
Ð1、Ð2、Ð3、Ð4四个角。若=5,=6,则下列关系何者
正确? (A) Ð1=Ð2 (B) Ð3=Ð4 (C) = (D) = 。
A
B
C
D
G
H
1
2
3
4
图(十)
【答案】A
3.(2010重庆綦江县)如图,在中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连结CG、CF,则以下四个结论一定正确的是( )
①△CDF≌△EBC ②∠CDF=∠EAF ③△ECF是等边三角形 ④CG⊥AE
A.只有①② B.只有①②③ C.只有③④ D.①②③④
【答案】B
4.(2010山东临沂)如图,在中,与相交于点,点是边的中点,,则的长是
(第7题图)
(A) (B) (C) (D)
【答案】A
5.(2010湖南衡阳)如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长为( )
A.8 B.9.5 C.10 D.11.5
【答案】A
6.(2010 河北)如图2,在□ABCD中,AC平分∠DAB,AB = 3,
则□ABCD的周长为
A
B
C
D
图2
A.6 B.9
C.12 D.15
【答案】C
7.(2010浙江湖州)如图在ABCD中,AD=3cm,AB=2cm,则ABCD的周长等于( )
A.10cm B.6cm C.5cm D.4cm
A
D
C
B
【答案】A.
8.(2010 四川成都)已知四边形,有以下四个条件:①;②;③;④.从这四个条件中任选两个,能使四边形成为平行四边形的选法种数共有( )
(A)6种 (B)5种 (C)4种 (D)3种
【答案】C
9.(2010山东泰安)如图,E是□ABCD的边AD的中点,CE与BA的延长线交于点F,若∠FCD=∠D,则下列结论不成立的是( )
A、AD=CF B、BF=CF C、AF=CD D、DE=EF
【答案】C
10.(2010 内蒙古包头)已知下列命题:
①若,则;
②若,则;
③角的平分线上的点到角的两边的距离相等;
④平行四边形的对角线互相平分.
其中原命题与逆命题均为真命题的个数是( )
A.1个 B.2个 C.3个 D.4个
【答案】B
11.(2010 重庆江津)如图,四边形的对角线互相平分,要使它成为矩形,
那么需要添加的条件是( )
A. B.
C. D.
【答案】D
12.(2010宁夏回族自治区)点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有 ( )
A.1个 B.2个 C.3个 D.4个
【答案】C
13.(2010鄂尔多斯)如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是
A.S△ADF=2S△EBF B.BF=DF
C.四边形AECD是等腰梯形 D. ∠AEC=∠ADC
【答案】A
14.(2010广东清远)如图2,在ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为( )
A.4cm B.5cm C.6cm D.8cm
【答案】A
15.(2010台湾) 如图(十六),有一圆内接正八边形ABCDEFGH,若△ADE的面积为
10,则正八边形ABCDEFGH的面积为何?
(A) 40 (B) 50 (C) 60 (D) 80 。
B
A
C
D
E
F
G
H
图(十六)
【答案】A
16.(2010 山东济南) 如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是( )
A. cm B.cm
C. cm D.1cm
【答案】A
17.(2010 河北)如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是
图4
A.7 B.8
C.9 D.10
【答案】B
18.(2010 广西玉林、防城港)如图3,正方形ABCD内接于⊙O,直径MN∥AD,则阴影面积占圆面积: ( )
A. B. C. D.
【答案】B
19.(2010 广西钦州市)某花园内有一块五边形的空地如图所示,为了美化环境,现计划在五边形各顶点为圆心,2 m长为半径的扇形区域(阴影部分)种上花草,那么种上花草的扇形区域总面积是
(A)m2 (B)m2 (C)m2 (D)m2
第17题
【答案】A
20.(2010新疆乌鲁木齐)将边长为3cm的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为
A. B. C. D.
【答案】A
21.(2010广西柳州)一个正多边形的一个内角为120度,则这个正多边形的边数为
A.9 B.8 C.7 D.6
【答案】D
二、填空题
1.(2010福建福州)如图,在ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为_______.
(第14题)
【答案】21
2.(2010福建宁德)如图,在□ABCD中,AE=EB,AF=2,则FC等于_____.
第16题图
F
A E B
C
D
【答案】4
3.(2010 山东滨州)如图,平行四边形ABCD中, ∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为 .
【答案】2
4.(2010山东潍坊)如图,在△ABC中,AB=BC,AB=12cm,F是AB边上的一点,过点F作FE∥BC交CA于点E,过点E作ED∥AB交于BC于点D,则四边形BDEF的周长是 .
【答案】24cm
5.(2010湖南常德)如图2,四边形ABCD中,AB//CD,要使四边形ABCD为平行四边形,则可添加的条件为 .(填一个即可).
D
B
C
A
图2
【答案】∥BC等
6.(2010湖南郴州)如图,已知平行四边形,是延长线上一点,连结交于点,在不添加任何辅助线的情况下,请补充一个条件,使,这个条件是 .(只要填一个)
A
B
E
F
D
C
第13题
【答案】或或 或F为DE的中点或F为BC的中点或或B为AE的中点
7.(2010湖北荆州)如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,
则∠ECB的度数是 .
【答案】65°
8.(2010湖北恩施自治州)如图,在ABCD中,已知AB=9㎝,AD=6㎝,BE平分∠ABC交DC边于点E,则DE等
于 ㎝.
【答案】3
9.(2010云南红河哈尼族彝族自治州) 如图4,在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1 A1、 A1B1的中点,…,按此规律,则第n个图形中平行四边形的个数共有 个.
…
图4
【答案】3n
10.(2010 江苏镇江)如图,在平行四边形ABCD中,CD=10,F是AB边上一点,DF交AC于点E,且= ,BF= .
【答案】
11.(2010 广西钦州市)如图,□ABCD的对角线AC、BD相交于点O,点E是CD的中点,
若AD=4cm,则OE的长为 ▲ cm.
第5题
【答案】2
12.(2010青海西宁)如图1,在□ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB= ,那么的取值范围是 .
图1
【答案】3﹤x﹤11.
13.(2010广西梧州)如图2,在□ABCD中,E是对角线BD上的点,且EF∥AB,DE:EB=2:3,EF=4,则CD=的长为________
图2
A
B
C
D
F
E
【答案】10
14.(2010广东深圳)如图3,在□ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=
【答案】3
15.(2010辽宁本溪)过□ABCD对角线交点O作直线m,分别交直线AB于点E,交直线CD于点F,若AB=4,AE=6,则DF的长是 .
【答案】2或10
16.(2010广西河池)如图1,在□ABCD中,∠A=120°,则∠D= °.
图1
【答案】60
17.(2010 福建晋江)将一块正五边形纸片(图①)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图②
),需在每一个顶点处剪去一个四边形,例如图①中的四边形,则的大小是_______度.
①
②
第16题图
【答案】72
18.(2010江苏宿迁)如图,平面上两个正方形与正五边形都有一条公共边,
则等于 ▲ °.
(第13题)
α
【答案】72
19.(2010四川乐山)正六边形ABCDEF的边长为2cm,点P为这个正六边形内部的一个动点,则点P到这个正六边形各边的距离之和为__________cm.
【答案】
20.(2010广西桂林)正五边形的内角和等于______度.
【答案】540
21.(2010青海西宁)要使正六边形旋转后能与自身重合,至少应将它绕中心逆时针方向旋转 °.
【答案】60°
三、解答题
1. (2010浙江嘉兴)如图,在□ABCD中,已知点E在AB上,点F在CD上,且.
(1)求证:;
(2)连结BD,并写出图中所有的全等三角形.(不要求证明)
(第19题)
【答案】(1)在□ABCD中,AB//CD,AB=CD.
∵AE=CF,∴BE=DF,且BE//DF.
∴四边形BFDE是平行四边形.
∴. …5分
(第19题)
(2)连结BD,如图,
图中有三对全等三角形:
△ADE≌△CBF,
△BDE≌△DBF,
△ABD≌△CDB. …3分
2.(2010 嵊州市)(10分)已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,试探究AE与EF之间的数量关系。
(1)如图1,若AB=BC=AC,则AE与EF之间的数量关系是什么;
(2)如图2,若AB=BC,你在(1)中得到的结论是否发生变化?写出猜想,并加以证明;
(3)如图3,若AB=kBC,你在(1)中得到的结论是否发生变化?写出猜想不用证明。
【答案】(1)AE=EF
(2)猜想:(1)中结论没有发生变化,即仍然为AE=EF(过点E作EH∥AB,可证
△AEH≌△FEC)
(3)猜想:(1)中的结论发生变化,为AE=kEF
3.(2010 福建晋江)(8分)如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形是平行四边形,并予以证明.(写出一种即可)
关系:①∥,②,③,④.
已知:在四边形中, , ;
A
B
C
D
求证:四边形是平行四边形.
【答案】已知:①③,①④,②④,③④均可,其余均不可以.
已知:在四边形中,①∥,③.
求证:四边形是平行四边形.
证明:∵ ∥
∴,
∵,∴
∴四边形是平行四边形
4.(2010江苏宿迁)(本题满分8分)如图,在□ABCD中,点E、F是对角线AC上两点,且AE=CF.
求证:∠EBF=∠FDE.
【答案】证明:连接BD交AC于O点
C
A
B
D
E
F
O
∵四边形ABCD是平行四边形
∴OA=OC,OB=OD
又∵AE=CF
∴OE=OF
∴四边形BEDF是平行四边形
∴∠EBF=∠EDF
5.(2010 浙江衢州)(本题6分)
已知:如图,E,F分别是ABCD的边AD,BC的中点.
求证:AF=CE.
A
D
E
F
B
C
【答案】证明:方法1:
A
D
E
F
B
C
(第19题)
∵ 四边形ABCD是平行四边形,且E,F分别是AD,BC的中点,∴ AE = CF.
又 ∵ 四边形ABCD是平行四边形,
∴ AD∥BC,即AE∥CF.
∴ 四边形AFCE是平行四边形.
∴ AF=CE.
方法2:
∵ 四边形ABCD是平行四边形,且E,F分别是AD,BC的中点,
∴ BF=DE.
又 ∵ 四边形ABCD是平行四边形,
∴ ∠B=∠D,AB=CD.
∴ △ABF≌△CDE.
∴ AF=CE.
6.(2010年贵州毕节)如图,已知:平行四边形 ABCD中,的平分线交边于,的平分线 交于,交于.求证:.
A
B
C
D
E
F
G
【答案】证明:∵ 四边形是平行四边形(已知),
,(平行四边形的对边平行,对边相等)
,(两直线平行,内错角相等)
又∵ BG平分,平分(已知)
,(角平分线定义)
,.
,(在同一个三角形中,等角对等边)
,即.
7.(2010 湖南株洲)(本题满分6分)如图,已知平行四边形,是的角平分线,交于点.
(1)求证:;
(2)若,,求的度数.
【答案】(1)如图,在中,得,
1
2
3
又,∴,∴
(2)由得,
又,
∴ ∴
∵,∴,
得:.
8.(2010广东中山)如图,分别以RtΔABC的直角边AC及斜边AB向外作等边ΔACD、等边ΔABE.已知∠BAC=,EF⊥AB,垂足为F,连结DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
【答案】(1)解:在RtΔABC,∠BAC=,
∴∠ABC=
等边ΔABE中,∠ABE=,且AB=BE
∵EF⊥AB
∴∠EFB=
∴RtΔABC≌RtΔEBF
∴AC=EF
(2)证明:等边ΔACD中,∠DAC=,AD=AC
又∵∠BAC=
∴∠DAF=
∴AD∥EF
又∵AC=EF
∴AD=EF
∴四边形ADFE是平行四边形.
9.(2010湖南郴州)已知:如图,把绕边BC的中点O旋转得到.
求证:四边形ABDC是平行四边形.
第23题
【答案】 .证明:因为 是由旋转所得
所以点A、D,B、C关于点O中心对称
所以OB=OC OA=OD
所以四边形ABCD是平行四边形
(注:还可以利用旋转变换得到AB=CD ,AC=BD相等;或证明证ABCD是平行四边形)
10.2010湖南怀化) 如图7,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.
求证:四边形AECF是平行四边形.
图7
【答案】证明:∵四边形ABCD是平行四边形,∴OD=OB,OA=OC
∴∠DFO=∠BEO, ∠FDO=∠EBO
∴△FDO≌△EBO
∴OF=OE
∴四边形AECF是平行四边形
11.(2010湖北省咸宁)问题背景
(1)如图1,B
C
D
F
E
图1
A
3
6
2
△ABC中,DE∥BC分别交AB,AC于D,E两点,
过点E作EF∥AB交BC于点F.请按图示数据填空:
四边形DBFE的面积 ,
△EFC的面积 ,
△ADE的面积 .
探究发现
(2)在(1)中,若,,DE与BC间的距离为.请证明.
拓展迁移
(3)如图2,□DEFG的四个顶点在△ABC的三边上,若
△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)
中的结论求△ABC的面积.
B
C
D
G
F
E
图2
A
【答案】(1),,.
(2)证明:∵DE∥BC,EF∥AB,
∴四边形DBFE为平行四边形,,.
∴△ADE∽△EFC.
∴.
∵, ∴.
∴.
而, ∴
(3)解:过点G作GH∥AB交BC于H,则四边形DBHG为平行四边形.
B
C
D
G
F
E
图2
A
H
∴,,.
∵四边形DEFG为平行四边形,
∴. ∴.
∴. ∴△DBE≌△GHF.
∴△GHC的面积为.
由(2)得,□DBHG的面积为.
∴△ABC的面积为.
12.(2010湖北恩施自治州)如图,已知,在ABCD中,AE=CF,M、N分别是DE、BF的中点.
求证:四边形MFNE是平行四边形 .
【答案】证明:由平行四边形可知,AB=CD,∠BAE=∠DFC,
∴BE=DF,∠AEB=∠CDF
又∵M、N分别是BE、DF的中点,∴ME=NF
又由AD∥BC,得∠ADF=∠DFC
∴∠ADF=∠BEA ∴ME∥NF
∴四边形MFNE为平行四边形。
13.(2010河南)如图,四边形ABCD是平行四边形,△AB’C和△ABC
关于AC所在的直线对称,AD和B’C相交于点O.连结BB’.
(1) 请直接写出图中所有的等腰三角形(不添加字母);
(2) 求证:△A B’O≌△CDO.
【答案】(1)△ABB′, △AOC和△BB′C.
(2)在平行四边形ABCD中,AB = DC,∠ABC = ∠D
由轴对称知AB′= AB,∠ABC = ∠AB′C
∴AB′= CD, ∠AB′O = ∠D
在△AB′O 和△CDO中,
∴△AB′O ≌△CDO
14.(2010四川乐山)如图(7),在平行四边形ABCD的对角线上AC 上取两点E和F,若AE=CF.
求证:∠AFD=∠CEB.
【答案】证明:四边形ABCD是平行四边形,
∵AD∥BC,AD=BC,
∴∠DAF=∠BCE
∵AE=CF
∴AE+EF=CF+EF
即AF=CE
∴△ADF≌△CBE
∴∠AFD=∠CEB
15.(2010广东东莞)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,边结DF.
⑴试说明AC=EF;
⑵求证:四边形ADFE是平行四边形.
A
B
C
D
E
F
【答案】⑴∵等边△ABE
∴∠ABE=60°,AB=BE
∵EF⊥AB ∴∠BFE=∠AFE=90°
∵∠BAC=30°,∠ACB=90°
∴∠ABC=60°
∴∠ABC=∠ABE,∠ACB=∠BFE=90°
∴△ABC≌△EFB,
∴AC=EF
⑵∵等边△ACD
∴AD=AC,∠CAD=60°
∴∠BAD=90°,∴AD∥EF
∵AC=EF
∴AD=EF
∴四边形ADFE是平行四边形.
16.(2010 山东东营) 如图,在平行四边形ABCD中,点E,F分别是AD,BC的中点.
求证:(1)△ABE≌△CDF;
(2)四边形BFDE是平行四边形.
A
E
D
C
F
B
(第19题图)
17.(2010 广东汕头)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EF⊥AB,垂足为F,连结DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
【答案】证明:(1)∵△ACD和△ABE都是等边三角形
∴∠EAB=∠DAC=60º,AB=AE,AC=AD
∵EF⊥AB
∴∠EFA=∠ACB=90º,∠AEF=30º
∵∠BAC=30º
∴∠BAC=∠AEF
∴△ABC≌△EAF(AAS)
∴AC=EF.
(2)∵∠DAC+∠CAB=90º
∴DA⊥AB
∵EF⊥AB
∴AD∥EF
∵AC=EF,AC=AD
∴AD=EF
∴四边形ADFE是平行四边形.
18.(2010 山东淄博)将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2,P是AC上的一个动点.
(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;
(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;
(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时□DPBQ的面积.
D
A
C
B
(第23题)
【答案】解:在Rt△ABC中,AB=2,∠BAC=30°,∴BC=,AC=3.
(1)如图(1),作DF⊥AC,∵Rt△ACD中,AD=CD,∴DF=AF=CF=.
∵BP平分∠ABC,∴∠PBC=30°,∴CP=BC·tan30°=1,∴PF=,∴DP==.
(第23题)
D
A
C
B
(2)
P
F
D
A
C
B
P
F
(1)
(2)当P点位置如图(2)所示时,根据(1)中结论,DF=,∠ADF=45°,又PD=BC=,∴cos∠PDF==,∴∠PDF=30°.
∴∠PDA=∠ADF-∠PDF=15°.
当P点位置如图(3)所示时,同(2)可得∠PDF=30°.
∴∠PDA=∠ADF+∠PDF=75°.
D
A
C
B
(3)
P
F
D
A
C
B
P
Q
(4)
(第23题)
(3)CP=.
在□DPBQ中,BC∥DP,∵∠ACB=90°,∴DP⊥AC.根据(1)中结论可知,DP=CP=,∴S□DPBQ==.
19.(2010 云南玉溪)如图9,在ABCD中,E是AD的中点,请添加适当条件后,构造出一对全等的三角形,并说明理由.
图9
【答案】解:添加的条件是连结B、E,过D作DF∥BE交BC于
点F,构造的全等三角形是△ABE与△CDF. …………4分
理由: ∵平行四边形ABCD,AE=ED, …………5分
∴在△ABE与△CDF中,
AB=CD, …………6分
∠EAB=∠FCD, …………7分
AE=CF , …………8分
∴△ABE≌△CDF. …………9分
20.(2010 贵州贵阳)已知,如图9,E、F是四边形ABCD的对角线AC上
的两点,AF=CE,DF=BE,DF∥BE.
(1)求证:△AFD≌△CEB(5分)
(2)四边形ABCD是平行四边形吗?请说明理由.(5分)
(图9)
【答案】(1)∵DF∥BE
∴∠DFA=∠BEC………………………………………………………………………………1分
在△AFD和△CEB中
∵DF=BE ∠DFA=∠BEC AF=CE……………………………………………………4分
△AFD≌△CEB(SAS)……………………………………………………………………5分
(2)是平行四边形。………………………………………………………………………6分
∵△AFD≌△CEB
∴AD=CB ∠DAF=∠BCE…………………………………………………………8分
∴AD∥CB………………………………………………………………………………9分
∴四边形ABCD是平行四边形………………………………………………………10分
21.(2010 湖北咸宁)问题背景
(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,
过点E作EF∥AB交BC于点F.请按图示数据填空:
四边形DBFE的面积 ,
△EFC的面积 ,
△ADE的面积 .
B
C
D
F
E
图1
A
3
6
2
探究发现
(2)在(1)中,若,,DE与BC间的距离为.请证明.
拓展迁移
(3)如图2,□DEFG的四个顶点在△ABC的三边上,若
△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)
中的结论求△ABC的面积.
B
C
D
G
F
E
图2
A
【答案】(1),,.……3分
(2)证明:∵DE∥BC,EF∥AB,
∴四边形DBFE为平行四边形,,.
∴△ADE∽△EFC.……4分
∴.
∵, ∴.……5分
∴.
而, ∴……6分
(3)解:过点G作GH∥AB交BC于H,则四边形DBHG为平行四边形.
B
C
D
G
F
E
图2
A
H
∴,,.
∵四边形DEFG为平行四边形,
∴. ∴.
∴. ∴△DBE≌△GHF.
∴△GHC的面积为.……8分
由(2)得,□DBHG的面积为.……9分
∴△ABC的面积为.……10分
22.(2010吉林长春)如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE、CD为邻边作□CDFE,过点C作CG∥AB交EF与点G。连接BG、DE。
(1)∠ACB与∠GCD有怎样的数量关系?请说明理由。(3分)
(2)求证:△BCG≌△DCE. (4分)
【答案】
23.(2010云南昭通)如图6□ABCD的两条对角线AC、BD相交于点O.
(1)图中有哪些三角形是全等的?
(2)选出其中的一对全等三角形进行证明.
【答案】解:(1)△AOB≌△COD
△AOD≌△COB
△ABD≌△CDB
△ADC≌△CBA ………………………………4分
(2)以△AOB≌△COD为例证明,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD.
在△AOB和△COD中
∴△AOB≌△COD. ……………………………8分
24.(2010广东佛山)已知:如图,在平行四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,且AE=CG,BF=DH。
求证:△AEH≌△CGF。
【答案】证明:如图,在□ABCD中,BC=DA,∠A=∠C,……2分
∵BF=DH,所以FC=HA, …………………………………4分
又∵AE=CG,∴△AEH≌△CGF。………………………6分
25.(2010云南曲靖)如图,E、F是 ABCD对角线AC上的两点,且BE//DF.
求证:(1)△ABE≌△CDF;
(2)∠1=∠2
【答案】证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD
∴∠BAE=∠DCF.
∵BE//DF,
∴∠BEF=∠DFE.
∴∠AEB=∠CFD.
∴△ABE≌△CDF(AAS).
(2)由△ABE≌△CDF得
BE=DF.
∵BE//DF.
∴四边形BEDF是平行四边形.
∴∠1=∠2.
26.(2010广东湛江)如图,在中,点E,F是对角线BD上的两点,且BE=DF,
求证:(1)
(2)
【答案】
证明:(1) 四边形ABCD是平行四边形,
,………………2分
……………...……3分
在和中
……………….……6分
(2)
…………….……...8分
……………………….……10分A
E
D
C
F
B
(第19题图)
证明:(1)在平行四边形ABCD中,AB=CD,AD=CB.
又点E,F分别是AD,BC的中点. ………1分
AE=CF, …………………………3分
,…………………4分
△ABE≌△DCF (边,角,边) ……5分
(2)在平行四边形BFDE中,
∵△ABE≌△DCF ,
BE=DF. ……………………………………………………………6分
又点E,F分别是AD,BC的中点.
DE=BF, ………………………………………………………………8分
四边形BFDE是平行四边形. ……………………………………9分