- 200.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
图形的折叠问题
折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.
类型1 三角形中的折叠问题
(2015·宜宾)如图,一次函数的图象与x轴、y轴分别相交于点A、B,将△AOB沿直线AB翻折,得△ACB.若C(,),则该一次函数的解析式为________.
【思路点拨】 利用翻折变换的性质结合锐角三角函数关系得出CO,AO的长,进而得出A、B两点的坐标,再利用待定系数法求出直线AB的解析式.
【解答】 连接OC,过点C作CD⊥x轴于点D,
∵将△AOB沿直线AB翻折,得△ACB,C(,),
∴AO=AC,OD=,DC=,BO=BC,
则tan∠COD==,
故∠COD=30°,∠BOC=60°,
∴△BOC是等边三角形,且∠CAD=60°.
则sin60°=,则AC==1,
故A(1,0),
sin30°===.
则CO=,故BO=,B点坐标为(0,),
设直线AB的解析式为y=kx+,把A(1,0)代入解析式可得k=-.
∴直线AB的解析式为y=-x+.
折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.
1.(2015·绵阳)如图,D是等边△ABC边AB上的一点,且AD∶DB=1∶2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE∶CF=( )
A. B. C. D.
2.(2014·德阳)如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DE的度数为________.
3.(2014·宜宾)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.
4.(2015·滨州)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处,若点D的坐标为(10,8),则点E的坐标为________.
类型2 四边形及其他图形中的折叠问题
(2015·南充)如图,在矩形纸片ABCD中,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.
(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)
(2)如果AM=1,sin∠DMF=,求AB的长.
【思路点拨】 (1)由矩形的性质得∠A=∠B=∠C=90°
,由折叠的性质和等角的余角相等,可得∠BPQ=∠AMP=∠DQC,所以△AMP∽△BPQ∽△CQD;
(2)设AP=x,由折叠关系可得:BP=AP=EP=x,AB=DC=2x,AM=1,根据△AMP∽△BPQ得:=,即BQ=x2,根据△AMP∽△CQD得:=,即CQ=2,从而得出AD=BC=BQ+CQ=x2+2,MD=AD-AM=x2+2-1=x2+1,根据Rt△FDM中∠DMF的正弦值得出x的值,从而求出AB的值.
【解答】 (1)有三对相似三角形,即△AMP∽△BPQ∽△CQD.
理由如下:∵四边形ABCD是矩形,
∴∠A=∠B=∠C=90°.
根据折叠可知:∠APM=∠EPM,∠EPQ=∠BPQ,∴∠APM+∠BPQ=∠EPM+∠EPQ=90°.
∵∠APM+∠AMP=90°,
∴∠BPQ=∠AMP,∴△AMP∽△BPQ,
同理:△BPQ∽△CQD.
∴△AMP∽△BPQ∽△CQD.
(2)设AP=x,
∴由折叠关系,BP=AP=EP=x,AB=DC=2x.
由△AMP∽△BPQ得,=,即=,
得BQ=x2.
由△AMP∽△CQD得,=,即=,
得CQ=2.
∴AD=BC=BQ+CQ=x2+2.
∴MD=AD-1=x2+1.
∵在Rt△FDM中,sin∠DMF=,
∴=.解得x1=3,x2=(不合题意,舍去).
即AB=6.
矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.
1.(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
A.12 B.24 C.12 D.16
2.(2015·泸州)如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为( )
A.13 B. C. D.12
3.(2015·德阳)将抛物线y=-x2+2x+3在x轴上方的部分沿x轴翻折至x轴下方,图象的剩余部分不变,得到一个新的函数图象,那么直线y=x+b与此新图象的交点个数的情况有( )
A.6种 B.5种 C.4种 D.3种
4.(2015·成都)如图,在 □ ABCD中,AB=,AD=4,将ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.
5.(2015·内江)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为________.
6.(2014·南充)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是________.
7.(2014·绵阳)如图1,在矩形ABCD中,AB=4,AD=3,将矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△DEC≌△EDA;
(2)求DF的值;
(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,顶点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.
参考答案
类型1 三角形中的折叠问题
1.B 提示:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°.又∵折叠△ABC,使得点C恰好与边AB上的点D重合,折痕为EF,∴∠EDF=∠C=60°,CE=DE,CF=DF.∴∠ADE+∠FDB=120°.∴∠AED=∠FDB.∴△AED∽△BDF.∴==.设等边△ABC边长为6个单位,CE=x,CF=y,AE=6-x,BC=6-y,∴==,解得x=,y=.∴x∶y=4∶5,故选择B.
2.65° 3.1.5 4.(10,3)
类型2 四边形及其他图形中的折叠问题
1.D 2.A
3.B 提示:由题意,易知y=-x2+2x+3与x轴的两个交点坐标分别为(3,0)和(-1,0),顶点坐标为(1,4),顶点关于x轴对称点的坐标为(1,-4).当直线y=x+b过(-1,0)时,b=1,此时直线与新的函数图象只有一个交点;当b>1时,此时直线与新的函数图象无交点;当直线y=x+b过(3,0)时,b=-3,此时直线与新的函数图象有三个交点;观察图象,易知:当-3