• 62.00 KB
  • 2021-05-10 发布

人教初中数学中考几何知识点大全

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
目录 一、图形的认知………………………………………………………………………………2‎ 二、平行线知识点……………………………………………………………………………3‎ 三、命题、定理………………………………………………………………………………3‎ 四、平移………………………………………………………………………………………3‎ 五、平面直角坐标系知识点…………………………………………………………………4‎ 六、与三角形有关的线段……………………………………………………………………5‎ 七、与三角形有关的角………………………………………………………………………5‎ 八、多边形及其内角和………………………………………………………………………6‎ 九、镶嵌………………………………………………………………………………………6‎ 十、全等三角形知识点………………………………………………………………………7‎ 十一、轴对称…………………………………………………………………………………7‎ 十二、勾股定理………………………………………………………………………………8‎ 十三、四边形…………………………………………………………………………………8‎ 十四、旋转……………………………………………………………………………………9‎ 十五、圆知识点汇总…………………………………………………………………………10‎ 十六、相似三角形……………………………………………………………………………13‎ 十七、投影与视图……………………………………………………………………………14‎ 十八、尺规作图………………………………………………………………………………15‎ 初中中考数学几何知识点大全 直线:没有端点,没有长度 射线:一个端点,另一端无限延长,没有长度 线段:两个端点,有长度 一、图形的认知 ‎1、我们把从实物中抽象出的各种图形统称为几何图形 ‎2、有些几何图形的各部分不都在同一平面内,它们是立体图形 ‎3、有些几何图形的各部分都在同一平面内,它们是平面图形 ‎4、有些立体图形是由一些平面图形转成的,将它们的表面适当展开,可以展开成平面图形。‎ 这样的平面图形称为相应立体图形的展开图 ‎5、长方体、正文体、圆柱、圆锥、球等都是几何体,简称体 ‎6、包围着体的是面,面有平面和曲面两种。‎ 由若干个多边形所围成的几何体,叫做多面体。‎ 围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,若干个面的公共顶点叫做多面体的顶点。‎ 注意:各面都是平面的立体图形称为多面体。像圆锥、圆台因为有的面是曲面,而不被称为“多面体”。圆锥、圆柱、圆台统称为旋转体。立体图形的各个面都是平的面,这样的立体图形称为多面体。‎ ‎7、经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线 ‎8、当两条不同的直线有一个公共点时,我们就称这两条直线相交。这个公共点叫做它们的交点 ‎9、两点的所有连线中,线段最短。简单说成:两点之间,线段最短 ‎10、连接两点间的线段的长度,叫做这两点的距离 ‎11、角:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边 ‎12、角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线 ‎13、余角和补角:如果两个角加起来为90,则一个角是另一个角的余角 ‎ 如果两个角加起来为180,则一个角是另一个角的补角 ‎ 邻补角:相邻的补角 ‎14、同角的余角相等,等角的余角相等 ‎ 同角的补角相等,等角的补角相等 二、平行线知识点 ‎1、对顶角性质:对顶角相等。注意:对顶角的判断 一个角的两边分别是另一个角两边的反向延长线,这两个角是对顶角。‎ 两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。‎ ‎2、一直线互相垂直,(相交成90度角),那么一条直线就叫另一条直线的垂线,它们的交点叫垂足。‎ ‎3、过一点有且只有一条直线与已知直线垂直 ‎4、直线外一点到它与这条直线垂足的连线,叫做垂线段 连接直线外一点与直线上各点所有线段中,垂线段最短。我们把垂线段的长度,叫点到直线的距离 ‎5、过直线外一点只有一条直线与已知直线平行 ‎6、直线的两种关系:平行与相交(垂直是相交的一种特殊情况)‎ ‎6、如果a∥b,a∥c,则b∥c ‎7、同位角、内错角、同旁内角的定义。注意从文字角度去解读。‎ ‎8、平行线的性质:两直线平行,同位角相等、内错角相等、同旁内角互补 ‎9、注意区分判定及性质。将平行线性质反向解读,即为判定 ‎10、在同一平面内,平行线永不相交 三、命题、定理 ‎ 1、判断一件事情的语句,叫做命题,命题由题设和结论两部分组成 ‎2、命题可以写成“如果……那么……”的形式,这时“如果”后接的部分就是题设,“那么”后接的部分就是结论。 ‎ ‎3、结论一定成立的命题,叫做真命题;不能保证结论一定成立 的,叫做假命题。‎ ‎4、定理:我们学习过的一些图形的性质,都是真命题。它们的正确性是我们经过推理证实的,这样得到的真命题叫做定理。‎ 四、平移 ‎1、平移性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。‎ ‎2、平移作用:新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。(或者在同一直线上且相等)‎ 图形的这种移动,叫做平移变换,简称平移。‎ 平移之后的图形与原图形相比,对应边相等,对应角相等 五、平面直角坐标系知识点 ‎1、有序数对:我们把这种有顺序的两个数a与b组成的数队,叫做有序数对。‎ ‎2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。‎ ‎ 水平的数轴称为x轴或横轴,习惯上取向右为正方向 ‎ 竖直的数轴称为y轴或纵轴,取向上方向为正方向 ‎ 两坐标轴的交点为平面直角坐标系的原点 ‎3、象限:坐标轴上的点不属于任何象限 ‎ 第一象限:x>0,y>0 第二象限:x<0,y>0‎ 第三象限:x<0,y<0 第四象限:x>0,y<0‎ ‎ 横坐标上的点坐标:(x,0) 纵坐标上的点坐标:(0,y)‎ ‎4、距离问题:点(x,y)距x轴的距离为y的绝对值 ‎ 距y轴的距离为x的绝对值 ‎ 坐标轴上两点间距离:点A(x1,0)点B(x2,0),则AB距离为 x1-x2的绝对值 ‎ 点A(0,y1)点B(0,y2),则AB距离为 y1-y2的绝对值 ‎5、角平分线:(x,y)为第一、三象限角平分线上点,则x=y ‎ (x,y)为第二、四象限角平分线上点,则x+y=0‎ ‎6、两个数的绝对值相等,则这两个数相等或者互为相反数 ‎7、若直线l与x轴平行,则直线l上的点纵坐标值相等 ‎ 若直线l与y轴平行,则直线l上的点横坐标值相等 ‎8、对称问题:一点关于x轴对称,则x同y反 ‎ 关于y轴对称,则y同x反 ‎ 关于原点对称,则x反y反 ‎9、距离问题(选讲):坐标系上点(x,y)距原点距离为 ‎ 坐标系中任意两点(x1,y1),(x2,y2)之间距离为 ‎10、中点坐标(选讲):点A(x1,0)点B(x2,0),则AB中点坐标为 ‎11、平移:在平面直角坐标系中,‎ 将点(x,y)向右平移a个单位长度,可以得到对应点(x+a,y)‎ ‎ 向左平移a个单位长度,可以得到对应点(x-a,y)‎ ‎ 向上平移b个单位长度,可以得到对应点(x,y+b)‎ ‎ 向下平移b个单位长度,可以得到对应点(x,y-b)‎ 六、与三角形有关的线段 ‎1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形 ‎2、等边三角形:三边都相等的三角形 ‎3、等腰三角形:有两条边相等的三角形 ‎4、不等边三角形:三边都不相等的三角形 ‎5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角 ‎6、三角形分类:不等边三角形 ‎ 等腰三角形:底边和腰不等的等腰三角形 ‎ 等边三角形 ‎7、三角形两边之和大于第三边,两边之差小于第三边。依据:两点之间,线段最短 注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形 ‎ 2)在实际运用中,已经两边,则第三边的取值范围为:两边之差<第三边<两边之和 ‎ 3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形 ‎8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高 ‎9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线 ‎ 三角形的中线将三角形分为面积相等的两部分 注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小 ‎10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线 ‎11、三角形的中线、角平分线、高均为线段 ‎11、三角形的稳定性,四边形没有稳定性 七、与三角形有关的角 ‎1、三角形内角和定理:三角形三个内角的和等于180度。‎ ‎ 证明方法:利用平行线性质 ‎ 由此可推出:三角形最多只有一个直角或者钝角,最少有两个锐角 ‎2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角 ‎ 结合内角和可知:三角形的外角最少两个钝角 ‎3、三角形的一个外角等于与它不相邻的两个内角的和 ‎4、三角形的一个外角大于与它不相邻的任何一个内角 ‎5、三角形的外角和为360度 ‎6、等腰三角形两个底角相等 ‎7、A+B=C,或者A-B=C等相似形式,均可推出三角形为直角△‎ ‎8、A+BC等相似形式,均可推出三角形为钝角△‎ 八、多边形及其内角和 ‎1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形 ‎2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。‎ ‎3、内角:多边形相邻两边组成的角叫做它的内角 ‎4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角 ‎5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线 ‎6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形 ‎7、多边形的内角和:n边形内角和等于(n-2)*180‎ ‎8、多边形的外角和:360度 ‎ 注:有些题,利用外角和,能提升解题速度 ‎ 由外角和可知,对于N边形,最多只能有三个外角为钝角 ‎ 最多只能有三个内角为锐角 ‎ 对于N边形,最多只能有四个外角为直角,最多有四个内角为直角。这时候,N=4‎ ‎ 对于N>4的N边形,最多只能有三个外角为直角,最多有三个内角为直角 ‎9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n边形分成n-2个△‎ ‎ 注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案 ‎10、从n边形的一个顶点出发,可以引n-3条对角线,n边形共有对角线n*(n-3)/2‎ 九、镶嵌 ‎1、平面图形能作“平面镶嵌”的必备条件,是图形拼合后同一个顶点的若干个角的和恰好等于360°。用同一种正多边形镶嵌,只要正多边形内角的度数整除360°,这种正多边形就能作平面镶嵌。‎ ‎2、两种正多边形镶嵌,若第一个正多边形的内角为M,第二种正多边形的内角为N,则 ‎ xM+yN=360‎ ‎ 必须有正整数解 ‎ 通常对方程两边同时除以一个M、N、360的最大公约数 ‎ 再通过列举法去判断此方程是否有正整数解。如有,则可以镶嵌。‎ ‎ 同时,可以根据正整数解的对数,判定有几种镶嵌方案。‎ 十、全等三角形知识点 ‎1、全等形:能够完全重合的两个图形叫全等形。‎ ‎2、全等三角形:能够完全重合的两个三角形叫作全等三角形。‎ ‎3、对应顶点、对应边、对应角:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。‎ ‎4、全等三角形的性质:全等三角形的对应边相等 ‎ 全等三角形的对应角相等 ‎5、普通全等三角形的判定方法:4种判定 ‎1)三边对应相等的两个三角形全等(边边边、SSS)‎ ‎2)两边和它们的夹角对应相等的两个三角形全等(边角边、SAS)‎ ‎3)两角和它们的平边对应相等的两个三角形全等(角边角、ASA)‎ ‎4)两个角和其中一个角的对边对应相等的两个三角形全等(角角边、AAS)‎ ‎6、直角三角形全等的特殊判定 斜边和一条直角边对应相等的两个直角三角形全等(斜边直角边、HL)‎ ‎7、角的平分线性质及判定 ‎1)性质:角的平分线上的点到角的两边距离相等 ‎2)判定:角的内部到角的两边距离相等的点在角的平分线上。‎ 十一、轴对称 ‎ 1、如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。注意:线段不能称为对称轴 ‎ 2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后的重合的点是对应点,叫做对称点。‎ ‎ 3、经过线段中心且垂直于这条线段的直线,叫做这条线段的垂直平分线 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线的垂直平分线 类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线 ‎4、线段的垂直平分线性质及判定 ‎1)性质:线段的垂直平分线上的点到线段两端距离相等 ‎2)判定:到线段两端距离相等的点在线段的垂直平分线上 ‎5、等腰△:两条边相等的三角形 ‎6、等腰△的性质:1)两个底角相等 ‎ 2)顶角平分线、底边上的中线、底边上的高相互重合 ‎7、等腰三角形的判定:如果一个三角形的有两个角相等,那么这两个角所对的边也相等。简称:等角对等边 ‎8、等边△:特殊的等腰△,三条边都相等的△‎ ‎9、等边△的性质:三个内角都相等,并且每一个角都等于60度 ‎10、等边△的判定:1)三个角都相等的三角形是等边△‎ ‎ 2)有一个角是60度的等腰△是等边△‎ ‎11、在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半 十二、勾股定理 ‎1、如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 ‎ 我们把这个命题称为勾股定理 ‎2、如果三角形的三边长a,b,c,满足 ‎ 那么这个三角形是直角三角形 ‎ 我们把这个命题称为勾股定理的逆命题 ‎3、命题1和命题2的题设、结论正好相反。我们把这样的两个命题叫做互逆命题。‎ ‎ 如果把其中一个叫做原命题,那么另一个叫做逆命题。‎ 十三、四边形 ‎ 1、平行四边形:有两组对边分别平行的四边形叫做平行四边形 ‎2、平行四边形性质:1)对边相等 ‎ 2)对角相等 ‎ 3)对角线互相平分 ‎3、平行四边形的判定:1)两组对边分别相等的四边形是平行四边形 ‎ 2)对角线互相平分的四边形是平行四边形 ‎ 3)一组对边平行且相等的四边形是平行四边形 ‎ 4)利用平行四边形的定义 ‎4、中位线:三角形的中位线平行于三角形的第三边,且等于第三边的一半 ‎5、平行线间的距离:两平行线间最短的线段(垂直)‎ ‎6、矩形:有一个角是直角的平行四边形叫做矩形 ‎7、矩形的性质:1)矩形的四个角都是直角 ‎ 2)矩形的对角线相等 ‎8、直角三角形斜边上的中线等于斜边的一半 ‎9、矩形的判定:1)对角线相等的平行四边形是矩形 ‎ 2)有三个角是直角的四边形是矩形 ‎ 3)利用矩形的定义 ‎10、菱形:有一邻边相等的平等四边形叫做菱形 ‎11、菱形的性质:1)菱形的四条边都相等 ‎ 2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角 ‎12、菱形的判定:1)对角线互相垂直的平行四边形是菱形 ‎ 2)四边相等的四边形是菱形 ‎ 3)利用菱形的定义 ‎13、正方形:四条边都相等,四个角都是直角。‎ ‎ 正方形既是矩形,又是菱形 ‎ 它具有矩形的性质,也具备菱形的性质 ‎14、梯形:一组对边平等,另一组对边不平行的四边形叫做梯形 ‎ 两腰相等的梯形叫做等腰梯形 ‎ 有一个角是直角的梯形叫做直角梯形 ‎15、等腰梯形的性质:1)等腰梯形同一底边上的两个角相等 ‎ 2)等腰梯形的两条对角线相等 ‎16、等腰梯形的判定:1)同一个底上的两个角相等的梯形是等腰梯形 ‎ 2)利用等腰梯形的定义 ‎17、重心:平行四边形的重心是它的两条对角线的交点 ‎ 三角形的三条中线交于一点,这一点就是三角形的重心 ‎18、各类图形面积计算 ‎ 1)三角形:底*高/2‎ ‎ 2)平行四边形:底*高 ‎ 3)矩形(正方形):长*宽 ‎4)菱形(正方形):底*高,对角线的乘积/2‎ ‎5)梯形:(上底+下底)*高/2‎ 十四、旋转 ‎1、把一个图形绕某一点O转动一个角度的图形变换叫做旋转。‎ 点O叫做旋转中心,转动的角叫做旋转角。‎ 如果图形上的P经过旋转变为点P’,那么这两个点叫做这个旋转的对应点 ‎2、把一个图形绕着某一个点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。‎ 十五、圆知识点汇总 ‎1、在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径 ‎1)圆上各点到定点的距离都等于定长 ‎2)到定点的距离等于定长的点都在同个平面上 因此,圆心为O、半径为r的圆可以看成所有到定点O距离等于定长r的点的集合 圆面积公式:‎ 圆周长公式:‎ 垂径定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧 进一步结论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 特别注意:这两个定理,哪个定律规定弦不是直径。注意选择题陷阱。‎ ‎2、弧、弦、圆心角 弧:圆上任意两点间的部分叫做圆弧,简称弧。‎ 圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆 弦:连接圆上任意两点的线段,叫做弦。经过圆心的弦,叫做直径 圆心角:顶点在圆心的角 圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴 圆是中心对称图形,圆心O是它的对称中心 三个相等:‎ 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。‎ 在同圆或等圆中,如果两两弧相等,那么它们所对应的圆心角相等,所对的弦相等。‎ 在同圆或等圆中,如果两条弦相等,那么它们所对应的圆心角相等,所对的弧相等。‎ ‎3、圆周角 顶点在圆上,并且两边都圆相交的角叫做圆周角。‎ ‎4、圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半 推论:‎ 半圆(或直径)所对的圆周角是直角,90度的圆周角所对应的弦是直径。‎ 推论:‎ 圆的内接四边形对角之和为180度 注意:对内接四边形的判定,必须4个顶点都在圆上。‎ ‎5、点和圆的位置关系 点P在圆内 dr ‎6、不在同一直线上的三个点确定一个圆 注意:不在同一直线这一要点 经过三角形的三个顶点可以做一个圆,这个圆叫作三角形的外接圆 外接圆的圆心是三角形三条边垂直平分线的交点,叫作这个三角形的外心 ‎ 特殊的:直角△的外心在斜边上的中点。‎ ‎ 一般求△外心的题往往是直角△或者等腰△,等腰△请结合垂径定理和勾股定理 ‎7、直线和圆的位置关系 直线l和圆O相交(有两个公共点) dr ‎ ‎ ‎8、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 在灵活运用该定理的同时,切莫忘记第三大点中的判定方法!(往往在出现角平分线、等腰三角形的场所,我们需要用到此方法去判定相切)‎ 例:(2011湖北武汉调考模拟二) 如图,在△ABC中,∠C=90°,AC+BC=8,∠ACB的平分线交AB于点D,以D为圆心的⊙O与AC相切于点D.‎ ‎(1)求证: ⊙0与BC相切; ‎ ‎(2)当AC=2时,求⊙O的半径, ‎ ‎9、切线的性质定理 圆的切线垂直于过切点的半径 这两个定理的运用:前者是不清楚直线与圆的关系,进行判断。后者是已知直线与圆相切,进行性质分析。‎ ‎ ‎ ‎10、切线长定理 经过圆外一点作过圆的切线,这点和切点之间的线段的长,叫作这点到圆的切线长 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。这个定理叫作切线长定理。‎ ‎11、三角形的的内心 与三角形各边都相切的圆叫做三角形的内切圆。‎ 内切圆的圆心是三角形三条角一部分线的交点,叫作三角形的内心。‎ 注意内心外心的区别和应用。三角形的内心必然在△内部,外心则有可能在外部 内切圆半径的计算方法 三角形面积=内切圆半径*三角形周长/2‎ 例题(2011广东南塘二模)Rt△ABC中,∠C=90°,AC=4,BC=3,内切圆半径= ;‎ ‎12、点和圆的位置关系 点P在圆内 dr ‎14、直线和圆的位置关系 直线与圆相交(两个交点) dr ‎15、圆和圆的位置关系 圆与圆相交(两个交点) R-r R+r ‎ 圆与圆内含(没有交点) d正投影长度 ‎ 3)线段垂直于投影面,正投影为一个点 ‎6、平面投影 ‎ 1)纸板平行于投影面,正投影与纸板行状大小一致 ‎ 2)纸板倾斜于投影面,正投影的形状大小发生变化,减少了 ‎ 3)纸板垂直于投影面,正投影成为一条线段 ‎7、当物体的某个面平等于投影时,这个面的正投影与这个面的形状、大小完全相同 ‎8、视图:我们从某一个角度观察一个物体时,所看到的图像叫做物体的一个视图 ‎9、三视图:一个物体在三个投影面内同时进行正投影 ‎ 1)在正面内得到的由前向后观察物体的视图,叫做主视图 ‎ 2)在水平面内得到的由上向下观察物体的视图,叫做俯视图 ‎ 3)在侧面内得到的由左向右观察物体的视图,叫做左视图 ‎10、画三视图,三个视图要放在正确的位置,并且 ‎ 1)主视图与俯视图的长对正 ‎ 2)主视图与左视图的高平齐 ‎ 3)左视图与俯视图的宽相等 十七、尺规作图 ‎1、角平分线 ‎2、垂直平分线 ‎3、过圆外一点做圆的切线(通过直角△斜边的中线等于斜边的一半)(选讲)‎