- 349.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2019年河北省中考数学试卷
一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列图形为正多边形的是( )
A. B. C. D.
2.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作( )
A.+3 B.﹣3 C.﹣ D.+
3.如图,从点C观测点D的仰角是( )
A.∠DAB B.∠DCE C.∠DCA D.∠ADC
4.语句“x的与x的和不超过5”可以表示为( )
A.+x≤5 B.+x≥5 C.≤5 D.+x=5
5.如图,菱形ABCD中,∠D=150°,则∠1=( )
A.30° B.25° C.20° D.15°
6.小明总结了以下结论:
①a(b+c)=ab+ac;
②a(b﹣c)=ab﹣ac;
③(b﹣c)÷a=b÷a﹣c÷a(a≠0);
④a÷(b+c)=a÷b+a÷c(a≠0)
其中一定成立的个数是( )
A.1 B.2 C.3 D.4
7.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容
则回答正确的是( )
A.◎代表∠FEC B.@代表同位角
C.▲代表∠EFC D.※代表AB
8.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为( )
A.5×10﹣4 B.5×10﹣5 C.2×10﹣4 D.2×10﹣5
9.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为( )
A.10 B.6 C.3 D.2
10.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )
A. B.
C. D.
11.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:
①从扇形图中分析出最受学生欢迎的种类
②去图书馆收集学生借阅图书的记录
③绘制扇形图来表示各个种类所占的百分比
④整理借阅图书记录并绘制频数分布表
正确统计步骤的顺序是( )
A.②→③→①→④ B.③→④→①→②
C.①→②一④→③ D.②→④→③→①
12.如图,函数y=的图象所在坐标系的原点是( )
A.点M B.点N C.点P D.点Q
13.如图,若x为正整数,则表示﹣的值的点落在( )
A.段① B.段② C.段③ D.段④
14.图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=( )
A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x
15.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是( )
A.不存在实数根 B.有两个不相等的实数根
C.有一个根是x=﹣1 D.有两个相等的实数根
16.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.
甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.
乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.
丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.
下列正确的是( )
A.甲的思路错,他的n值对
B.乙的思路和他的n值都对
C.甲和丙的n值都对
D.甲、乙的思路都错,而丙的思路对
二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)
17.若7﹣2×7﹣1×70=7p,则p的值为 .
18.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.
示例:即4+3=7
则(1)用含x的式子表示m= ;
(2)当y=﹣2时,n的值为 .
19.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.
(1)A,B间的距离为 km;
(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为 km.
三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)
20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.
(1)计算:1+2﹣6﹣9;
(2)若1÷2×6□9=﹣6,请推算□内的符号;
(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.
21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.
尝试 化简整式A.
发现 A=B2,求整式B.
联想 由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:
直角三角形三边
n2﹣1
2n
B
勾股数组Ⅰ
/
8
勾股数组Ⅱ
35
/
22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.
(1)求这4个球价格的众数;
(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.
①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;
②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.
又拿
先拿
23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.
(1)求证:∠BAD=∠CAE;
(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;
(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.
24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).
(1)当v=2时,解答:
①求S头与t的函数关系式(不写t的取值范围);
②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)
(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.
25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.
(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;
(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;
(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.
26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.
(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;
(2)当点C在l下方时,求点C与l距离的最大值;
(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;
(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.
2019年河北省中考数学试卷
参考答案与试题解析
一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.【解答】解:正五边形五个角相等,五条边都相等,
故选:D.
2.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.
故选:B.
3.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,
∴从点C观测点D的仰角是∠DCE,
故选:B.
4.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.
故选:A.
5.【解答】解:∵四边形ABCD是菱形,∠D=150°,
∴AB∥CD,∠BAD=2∠1,
∴∠BAD+∠D=180°,
∴∠BAD=180°﹣150°=30°,
∴∠1=15°;
故选:D.
6.【解答】解:①a(b+c)=ab+ac,正确;
②a(b﹣c)=ab﹣ac,正确;
③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;
④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.
故选:C.
7.【解答】证明:延长BE交CD于点F,
则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).
又∠BEC=∠B+∠C,得∠B=∠EFC.
故AB∥CD(内错角相等,两直线平行).
故选:C.
8.【解答】解:=0.00002=2×10﹣5.
故选:D.
9.【解答】解:如图所示,n的最小值为3,
故选:C.
10.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.
故选:C.
11.【解答】解:由题意可得,
正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,
故选:D.
12.【解答】解:由已知可知函数y=关于y轴对称,
所以点M是原点;
故选:A.
13.【解答】解∵﹣=﹣=1﹣=
又∵x为正整数,
∴≤x<1
故表示﹣的值的点落在②
故选:B.
14.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),
∴俯视图的长为x+2,宽为x+1,
则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,
故选:A.
15.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,
∴(﹣1)2﹣4+c=0,
解得:c=3,
故原方程中c=5,
则b2﹣4ac=16﹣4×1×5=﹣4<0,
则原方程的根的情况是不存在实数根.
故选:A.
16.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;
乙的思路与计算都正确;
丙的思路错误,图示情况不是最长;
故选:B.
二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)
17.【解答】解:∵7﹣2×7﹣1×70=7p,
∴﹣2﹣1+0=p,
解得:p=﹣3.
故答案为:﹣3.
18.【解答】解:(1)根据约定的方法可得:
m=x+2x=3x;
故答案为:3x;
(2)根据约定的方法即可求出n
x+2x+2x+3=m+n=y.
当y=﹣2时,5x+3=﹣2.
解得x=﹣1.
∴n=2x+3=﹣2+3=1.
故答案为:1.
19.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,
∴AB=12﹣(﹣8)=20;
(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,
由(1)可知:CE=1﹣(﹣17)=18,
AE=12,
设CD=x,
∴AD=CD=x,
由勾股定理可知:x2=(18﹣x)2+122,
∴解得:x=13,
∴CD=13,
故答案为:(1)20;(2)13;
三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)
20.【解答】解:(1)1+2﹣6﹣9
=3﹣6﹣9
=﹣3﹣9
=﹣12;
(2)∵1÷2×6□9=﹣6,
∴1××6□9=﹣6,
∴3□9=﹣6,
∴□内的符号是“﹣”;
(3)这个最小数是﹣20,
理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,
∴1□2□6的结果是负数即可,
∴1□2□6的最小值是1﹣2×6=﹣11,
∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,
∴这个最小数是﹣20.
21.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,
∵A=B2,B>0,
∴B=n2+1,
当2n=8时,n=4,∴n2+1=42+1=15;
当n2﹣1=35时,n2+1=37.
故答案为:15;37
22.【解答】解:(1)∵P(一次拿到8元球)=,
∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,
∴这4个球价格的众数为8元;
(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:
原来4个球的价格按照从小到大的顺序排列为7,8,8,9,
∴原来4个球价格的中位数为=8(元),
所剩的3个球价格为8,8,9,
∴所剩的3个球价格的中位数为8元,
∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;
②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,
∴乙组两次都拿到8元球的概率为.
23.【解答】解:(1)在△ABC和△ADE中,(如图1)
∴△ABC≌△ADE(SAS)
∴∠BAC=∠DAE
即∠BAD+∠DAC=∠DAC+∠CAE
∴∠BAD=∠CAE.
(2)∵AD=6,AP=x,
∴PD=6﹣x
当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.
(3)如图2,设∠BAP=α,则∠APC=α+30°,
∵AB⊥AC
∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α,
∵I为△APC的内心
∴AI、CI分别平分∠PAC,∠PCA,
∴∠IAC=∠PAC,∠ICA=∠PCA
∴∠AIC=180°﹣(∠IAC+∠ICA)
=180°﹣(∠PAC+∠PCA)
=180°﹣(90°﹣α+60°)
=α+105°
∵0<α<90°,
∴105°<α+105°<150°,即105°<∠AIC<150°,
∴m=105,n=150.
24.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),
∴S头=2t+300
②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m
甲返回时间为:(t﹣150)s
∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;
因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.
(2)T=t追及+t返回=+=,
在甲这次往返队伍的过程中队伍行进的路程为:v×(T﹣150)=v×(﹣﹣150)=400﹣150v;
因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为(400﹣150v)m.
25.【解答】解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,
∴∠APC=90°,
∵▱ABCD,
∴AD∥BC,
∴∠PBC=∠DAB
∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,
得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,
∴x=BP=3×3=9,
故当x=9时,圆心O落在AP上;
∵AP是⊙O的直径,
∴∠AEP=90°,
∴PE⊥AD,
∵▱ABCD,
∴BC∥AD
∴PE⊥BC
(2)如图2,过点C作CG⊥AP于G,
∵▱ABCD,
∴BC∥AD,
∴∠CBG=∠DAB
∴=tan∠CBG=tan∠DAB=,
设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,
∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,
∴AG=AB+BG=3+9=12
∴tan∠CAP===1,
∴∠CAP=45°;
连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP=2×45°=90°,PH=AP=,
在Rt△CPG中,==13,
∵CP是⊙O的切线,
∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°
∴∠OPH=∠PCG
∴△OPH∽△PCG
∴,即PH×CP=CG×OP,×13=12OP,
∴OP=
∴劣弧长度==,
∵<2π<7
∴弦AP的长度>劣弧长度.
(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD≥90°,
当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,
∵∠DAB=∠CBP,
∴∠CPM=∠CBP
∴CB=CP,
∵CM⊥AB
∴BP=2BM=2×9=18,
∴x≥18
26.【解答】解:(1)当x=0吋,y=x﹣b=﹣b,
∴B (0,﹣b),
∵AB=8,而A(0,b),
∴b﹣(﹣b)=8,
∴b=4.
∴L:y=﹣x2+4x,
∴L的对称轴x=2,
当x=2吋,y=x﹣4=﹣2,
∴L的对称轴与a的交点为(2,﹣2 );
(2)y=﹣(x﹣)2+,
∴L的顶点C()
∵点C在l下方,
∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,
∴点C与1距离的最大值为1;
(3)由題意得,即y1+y2=2y3,
得b+x0﹣b=2(﹣x02+bx0)
解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,
对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),
解得x1=0,x2=b,
∵b>0,
∴右交点D(b,0).
∴点(x0,0)与点D间的距离b﹣(b﹣)=
(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x
直线解析式a:y=x﹣2019
联立上述两个解析式可得:x1=﹣1,x2=2019,
∴可知每一个整数x的值 都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;
∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,
∴线段和抛物线上各有2021个整数点
∴总计4042个点,
∵这两段图象交点有2个点重复重复,
∴美点”的个数:4042﹣2=4040(个);
②当b=2019.5时,
抛物线解析式L:y=﹣x2+2019.5x,
直线解析式a:y=x﹣2019.5,
联立上述两个解析式可得:x1=﹣1,x2=2019.5,
∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0;
在二次函数y=﹣x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之 间有1010个偶数,因此“美点”共有1010个.
故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.