- 1.50 MB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2012年全国中考数学选择填空解答压轴题分类解析汇编
专题10:几何三大变换问题之对称
一、选择题
1. (2012江苏连云港3分)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是【 】
A.+1 B.+1 C.2.5 D.
【答案】B。
【考点】翻折变换(折叠问题),折叠的性质,矩形的性质,等腰三角形的性质,三角形内角和定理,锐角三角函数定义,勾股定理。
【分析】∵将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,
∴AB=BE,∠AEB=∠EAB=45°,
∵还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,
∴AE=EF,∠EAF=∠EFA==22.5°。∴∠FAB=67.5°。
设AB=x,则AE=EF=x,
∴an67.5°=tan∠FAB=t。故选B。
2. (2012江苏南京2分)如图,菱形纸片ABCD中,∠A=600,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,EF为折痕,当D’FCD时,的值为【 】
A. B. C. D.
【答案】A。
【考点】翻折变换(折叠问题),菱形的性质,平行的性质,折叠的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】延长DC与A′D′,交于点M,
∵在菱形纸片ABCD中,∠A=60°,
∴∠DCB=∠A=60°,AB∥CD。
∴∠D=180°-∠A=120°。
根据折叠的性质,可得
∠A′D′F=∠D=120°,
∴∠FD′M=180°-∠A′D′F=60°。
∵D′F⊥CD,∴∠D′FM=90°,∠M=90°-∠FD′M=30°。
∵∠BCM=180°-∠BCD=120°,∴∠CBM=180°-∠BCM-∠M=30°。∴∠CBM=∠M。
∴BC=CM。
设CF=x,D′F=DF=y, 则BC=CM=CD=CF+DF=x+y。∴FM=CM+CF=2x+y,
在Rt△D′FM中,tan∠M=tan30°=,∴。
∴。故选A。
3. (2012福建南平4分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为【 】
A. B. C. D.3
【答案】B。
【考点】翻折变换(折叠问题),正方形的性质,折叠的性质,勾股定理。
【分析】∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3。
根据折叠的性质得:EG=BE=1,GF=DF。
设DF=x,则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2。
在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3-x)2,解得:。
∴DF= ,EF=1+。故选B。
4. (2012四川资阳3分)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是【 】
A. B. C. D.
【答案】C。
【考点】翻折变换(折叠问题),折叠对称的性质,相似三角形的判定和性质,
【分析】连接CD,交MN于E,
∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
∴MN⊥CD,且CE=DE。∴CD=2CE。
∵MN∥AB,∴CD⊥AB。∴△CMN∽△CAB。
∴。
∵在△CMN中,∠C=90°,MC=6,NC= ,∴
∴。
∴。故选C。
5. (2012贵州遵义3分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为【 】
A. B. C. D.
【答案】B。
【考点】翻折变换(折叠问题),矩形的性质和判定,折叠对称的性质,全等三角形的判定和性质,勾股定理。
【分析】过点E作EM⊥BC于M,交BF于N。
∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,
∵∠EMB=90°,∴四边形ABME是矩形。∴AE=BM,
由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM。
∵∠ENG=∠BNM,∴△ENG≌△BNM(AAS)。∴NG=NM。
∵E是AD的中点,CM=DE,∴AE=ED=BM=CM。
∵EM∥CD,∴BN:NF=BM:CM。∴BN=NF。∴NM=CF=。∴NG=。
∵BG=AB=CD=CF+DF=3,∴BN=BG﹣NG=3﹣。∴BF=2BN=5
∴。故选B。
6. (2012山东济宁3分)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是【 】
A.12厘米 B.16厘米 C.20厘米 D.28厘米
【答案】C。
【考点】翻折变换(折叠问题),折叠的性质,矩形的性质和判定,勾股定理。
【分析】设斜线上两个点分别为P、Q,
∵P点是B点对折过去的,∴∠EPH为直角,△AEH≌△PEH。
∴∠HEA=∠PEH。
同理∠PEF=∠BEF。
∴这四个角互补。∴∠PEH+∠PEF=90°,
∴四边形EFGH是矩形,∴△DHG≌△BFE,HEF是直角三角形。∴BF=DH=PF。
∵AH=HP,∴AD=HF。
∵EH=12cm,EF=16cm,
∴FH=(cm)。∴AD=FH= 20cm。故选C。
7. (2012广西河池3分)如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,
折痕为MN,连结CN.若△CDN的面积与△CMN的面积比为1︰4,则 的值为【 】
A.2 B.4 C. D.
【答案】D。
【考点】翻折变换(折叠问题),折叠的性质,矩形、菱形的判定和性质,勾股定理。
【分析】过点N作NG⊥BC于G,由四边形ABCD是矩形,易得四边形CDNG是矩形,又由折叠的性质,可得四边形AMCN是菱形,由△CDN的面积与△CMN的面积比为1:4,根据等高三角形的面积比等于对应底的比,可得DN:CM=1:4,然后设DN=x,由勾股定理可求得MN的长,从而求得答案:
过点N作NG⊥BC于G,
∵四边形ABCD是矩形,∴四边形CDNG是矩形,AD∥BC。
∴CD=NG,CG=DN,∠ANM=∠CMN。
由折叠的性质可得:AM=CM,∠AMN=∠CMN,∴∠ANM=∠AMN。
∴AM=AN。∴AM=CM,∴四边形AMCN是平行四边形。
∵AM=CM,∴四边形AMCN是菱形。
∵△CDN的面积与△CMN的面积比为1:4,∴DN:CM=1:4。
设DN=x,则AN=AM=CM=CN=4x,AD=BC=5x,CG=x。∴BM=x,GM=3x。
在Rt△CGN中,,
在Rt△MNG中,,
∴。故选D。
二、填空题
1. (2012上海市4分)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,点D在AC上,将△ADB沿直线BD翻折后,将点A落在点E处,如果AD⊥ED,那么线段DE的长为 ▲ .
【答案】。
【考点】翻折变换(折叠问题),折叠对称的性质,锐角三角函数定义,特殊角的三角函数值,三角形内角和定理,等腰三角形的判定和性质。
【分析】∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,
∴。
∵将△ADB沿直线BD翻折后,将点A落在点E处,∴∠ADB=∠EDB,DE=AD。
∵AD⊥ED,∴∠CDE=∠ADE=90°,
∴∠EDB=∠ADB=。
∴∠CDB=∠EDB﹣∠CDE=135°-90°=45°。
∵∠C=90°,∴∠CBD=∠CDB=45°。
∴CD=BC=1。∴DE=AD=AC﹣CD=。
2. (2012浙江杭州4分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为 ▲ .
【答案】(﹣1,1),(﹣2,﹣2)。
【考点】利用轴对称设计图案。
【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,把A进行移动可得到点的坐标:
如图所示:A′(﹣1,1),A″(﹣2,﹣2)。
3. (2012福建莆田4分)点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐
标系如图所示.若P是x轴上使得的值最大的点,Q是y轴上使得QA十QB的值最小的点,
则= ▲ .
【答案】5。
【考点】轴对称(最短路线问题),坐标与图形性质,三角形三边关系,待定系数法,直线上点的坐标与方程的关系。
【分析】连接AB并延长交x轴于点P,作A点关于y轴的对称点A′连接A′B交y轴于点Q,求出点Q与y轴的交点坐标即可得出结论:
连接AB并延长交x轴于点P,
由三角形的三边关系可知,点P即为x轴上使得|PA-PB|的值最大的点。
∵点B是正方形ADPC的中点,
∴P(3,0)即OP=3。
作A点关于y轴的对称点A′连接A′B交y轴于点Q,则A′B即为QA+QB的最小值。
∵A′(-1,2),B(2,1),
设过A′B的直线为:y=kx+b,
则 ,解得 。∴Q(0, ),即OQ=。
∴OP•OQ=3×=5。
4. (2012四川内江6分)已知A(1,5),B(3,-1)两点,在x轴上取一点M,使AM-BN取得最大值时,则M的坐标为 ▲
【答案】(,0)。
【考点】一次函数综合题,线段中垂线的性质,三角形三边关系,关于x轴对称的点的坐标,待定系数法,直线上点的坐标与方程的关系,解二元一次方程组。
【分析】如图,作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点。
此时AM-BM=AM-B′M=AB′。
不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B.
则M′A-M′B=M′A-M′B′<AB′(三角形两边之差小于第三边)。
∴M′A-M′B<AM-BM,即此时AM-BM最大。
∵B′是B(3,-1)关于x轴的对称点,∴B′(3,1)。
设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:
,解得 。∴直线AB′解析式为y=-2x+7。
令y=0,解得x= 。∴M点坐标为(,0)。
5. (2012辽宁大连3分)如图,矩形ABCD中,AB=15cm,点E在AD上,且AE=9cm,连接EC,将矩形ABCD沿直线BE翻折,点A恰好落在EC上的点A'处,则A'C= ▲ cm。
【答案】8。
【考点】翻折问题,矩形的性质,翻折对称的性质,勾股定理,解无理方程。
【分析】根据矩形和翻折对称的性质,得A'B= AB=15cm,A'E=AE=9cm,∠BA'C=900。
设A'C=x。
在Rt△BA'C中,根据勾股定理,得。
在Rt△CDE中,CD= AB=15cm,CE= x+9,根据勾股定理,得
。
∴AD=AE+DE= 。
∵AD=BC,即。
两边平方并整理,得 ,
两边平方并整理,得50x=400。解得x=8。
经检验,x=8是原方程的根并符合题意。
6. (2012贵州黔西南3分)把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF,若AB=3cm,BC=5cm,则重叠部分△DEF的面积为 ▲ cm 2。
【答案】。
【考点】折叠问题,折叠的性质,矩形的性质,勾股定理。
【分析】设ED=x,则根据折叠和矩形的性质,得A′E=AE=5-x,A′D=AB=3。
根据勾股定理,得,即,解得。
∴(cm 2)。
7. (2012山东青岛3分)如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点
C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最
短距离为 ▲ cm.
【答案】15。
【考点】圆柱的展开,矩形的性质,轴对称的性质,三角形三边关系,勾股定理。
【分析】如图,圆柱形玻璃杯展开(沿点A竖直剖开)后侧面是一个长18宽12的矩形,作点A关于杯上沿MN的对称点B,连接BC交MN于点P,连接BM,过点C作AB的垂线交剖开线MA于点D。
由轴对称的性质和三角形三边关系知AP+PC为蚂蚁到达蜂蜜
的最短距离,且AP=BP。
由已知和矩形的性质,得DC=9,BD=12。
在Rt△BCD中,由勾股定理得。
∴AP+PC=BP+PC=BC=15,即蚂蚁到达蜂蜜的最短距离为15cm。
8. (2012河南省5分)如图,在Rt△ABC中,∠C=900,∠B=300,BC=3,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,BD的长为 ▲
【答案】1或2。
【考点】翻折问题,轴对称的性质,锐角三角函数定义,特殊角的三角函数值,全等三角形的判定和性质。
【分析】∵在Rt△ABC中,∠C=900,∠B=300,BC=3,∴AC=,AB=2。
①当F在BC之间时,由翻折可知:BE=EF,∠B=∠EFD=300,
由图可知:∠AFE=900,∠AFC=600,
设BD=m,则FD= m,FC=2 m。 ∴,即,解得m=1。
②当F在BC外部时,由翻折可知:BE=EF,∠B=∠EFD=300。
如图可知:∠BAF=900,易得:∠AFE=∠BEF=300。
∴△AEF≌△DFE(AAS)。∴AE=DE。
设BD= m,∴DE=,BE=。
∴AB=AE+BE=DE+BE=,解得m=2。
综上所述,BD的长为1或2。
9. (2012内蒙古包头3分)如图,将△ABC 纸片的一角沿DE向下翻折,使点A 落在BC 边上的A ′点处,且DE∥BC ,下列结论:
① ∠AED=∠C;
② ;
③ BC= 2DE ;
④ 。
其中正确结论的个数是 ▲ 个。
【答案】4。
【考点】折叠问题,折叠对称的性质,平行线的性质,等腰三角形的判定和性质,直角三角形两锐角的关系,三角形中位线定理,全等、相似三角形的判定和性质。
【分析】①∵DE∥BC,∴根据两直线平行,同位角相等,得∠AED=∠C。∴①正确。
②∵根据折叠对称的性质,A ′D=AD,A ′E=AE。
∵DE∥BC,∴根据两直线分线段成比例定理,得。∴。∴②正确。
③连接A A ′,
∵根据折叠对称的性质,A ,A ′关于DE对称。
∴A A ′⊥DE。
∵DE∥BC,∴A A ′⊥BC。
∵A ′D=AD,∴∠DA A ′=∠D A ′A。
∴∠DB A ′=∠D A ′B。∴BD= A ′D。∴BD=AD。
∴DE是△ABC的中位线。∴BC= 2DE。∴③正确。
④∵DE∥BC,∴△ABC∽△ADE。
∵由③BC= 2DE,∴。
∵根据折叠对称的性质,△ADE≌△A′DE。∴。
∴,即。∴④正确。
综上所述,正确结论的个数是4个。
10. (2012黑龙江绥化3分)长为20,宽为a的矩形纸片(10<a<20),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作停止.当n=3时,a的值为 ▲ .
【答案】12或15。
【考点】翻折变换(折叠问题),正方形和矩形的性质,剪纸问题,分类归纳(图形的变化类)。
【分析】根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽。当10<a<20时,矩形的长为20,宽为a,所以,
第一次操作时,所得正方形的边长为a,剩下的矩形相邻的两边分别为20-a,a。
第二次操作时,由20-a<a可知所得正方形的边长为20-a,剩下的矩形相邻的两边分别为
20-a,a-(20-a)=2a-20。
∵(20-a)-(2a-20)=40-3a,∴20-a与2a-20的大小关系不能确定,需要分情况进行讨论。
第三次操作时,①当20-a>2a-20时,所得正方形的边长为2a-20,
此时,20-a-(2a-20)=40-3a,
∵此时剩下的矩形为正方形,∴由40-3a=2a-20得a=12。
①当2a-20>20-a时,所得正方形的边长为20-a,此时,2a-20-(20-a)=3a-40,
∵此时剩下的矩形为正方形,∴由3a-40=20-a得a=15。
故答案为12或15。
三、解答题
1. (2012海南省I11分)如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D分别落在对角线BC上的点E、F处,折痕分别为CM、AN.
(1)求证:△AND≌△CBM.
(2)请连接MF、NE,证明四边形MFNE是平行四边形,四边形MFNE是菱形吗?请说明理由?
(3)P、Q是矩形的边CD、AB上的两点,连结PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ∥MN。且AB=4,BC=3,求PC的长度.
【答案】(1)证明:∵四边形ABCD是矩形,∴∠D=∠B,AD=BC,AD∥BC。
∴∠DAC=∠BCA。
又由翻折的性质,得∠DAN=∠NAF,∠ECM=∠BCM,∴∠DAN=∠BCM。
∴△AND≌△CBM(ASA)。
(2)证明:∵△AND≌△CBM,∴DN=BM。
又由翻折的性质,得DN=FN,BM=EM,
∴FN=EM。
又∠NFA=∠ACD+∠CNF=∠BAC+∠EMA=∠MEC,
∴FN∥EM。∴四边形MFNE是平行四边形。
四边形MFNE不是菱形,理由如下:
由翻折的性质,得∠CEM=∠B=900,
∴在△EMF中,∠FEM>∠EFM。
∴FM>EM。∴四边形MFNE不是菱形。
(3)解:∵AB=4,BC=3,∴AC=5。
设DN=x,则由S△ADC=S△AND+S△NAC得
3 x+5 x=12,解得x=,即DN=BM=。
过点N作NH⊥AB于H,则HM=4-3=1。
在△NHM中,NH=3,HM=1,
由勾股定理,得NM=。
∵PQ∥MN,DC∥AB,
∴四边形NMQP是平行四边形。∴NP=MQ,PQ= NM=。
又∵PQ=CQ,∴CQ=。
在△CBQ中,CQ=,CB=3,由勾股定理,得BQ=1。
∴NP=MQ=。∴PC=4--=2。
【考点】翻折问题,翻折的性质,矩形的性质,平行的性质,全等三角形的判定和性质,平行四边形的判定和性质,菱形的判定,勾股定理。
【分析】(1)由矩形和翻折对称的性质,用ASA即可得到△AND≌△CBM。
(2)根据一组对边平行且相等的四边形是平行四边形的判定即可证明。
(3)设DN=x,则由S△ADC=S△AND+S△NAC可得DN=BM=。过点N作NH⊥AB于H,则由勾股定理可得NM=,从而根据平行四边形的性质和已知PQ=CQ,即可求得CQ=。因此,在△CBQ中,应用勾股定理求得BQ=1。从而求解。
2. (2012天津市10分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.
(Ⅰ)如图①,当∠BOP=300时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).
【答案】解:(Ⅰ)根据题意,∠OBP=90°,OB=6。
在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t。
∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=,t2=-(舍去).
∴点P的坐标为( ,6)。
(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,
∴△OB′P≌△OBP,△QC′P≌△QCP。
∴∠OPB′=∠OPB,∠QPC′=∠QPC。
∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°。
∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ。
又∵∠OBP=∠C=90°,∴△OBP∽△PCQ。∴。
由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11-t,CQ=6-m.
∴。∴(0<t<11)。
(Ⅲ)点P的坐标为(,6)或(,6)。
【考点】翻折变换(折叠问题),坐标与图形性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质。
【分析】(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案。
(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,
△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案。
(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例与,即可求得t的值:
过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°。
∴∠PC′E+∠EPC′=90°。
∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A。
∴△PC′E∽△C′QA。∴。
∵PC′=PC=11-t,PE=OB=6,AQ=m,C′Q=CQ=6-m,
∴。
∴。
∵,即,∴,即。
将代入,并化简,得。解得:。
∴点P的坐标为(,6)或(,6)。
3. (2012广东汕头12分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.
(1)求证:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的长.
【答案】(1)证明:∵△BDC′由△BDC翻折而成,
∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。
在△ABG≌△C′DG中,∵∠BAG=∠C,AB= C′D,∠ABG=∠AD C′,
∴△ABG≌△C′DG(ASA)。
(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。
设AG=x,则GB=8﹣x,
在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(8﹣x)2,解得x=。
∴。
(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=AD=4。
∵tan∠ABG=tan∠ADE=。∴EH=HD×=4×。
∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线。∴HF=AB=×6=3。
∴EF=EH+HF=。
【考点】翻折变换(折叠问题),翻折变换的性质,矩形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数定义,三角形中位线定理。
【分析】(1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论。
(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=8-x,在Rt△ABG中利用勾股定理即可求出AG的长,从而得出tan∠ABG的值。
(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG的值即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。
4. (2012广东省9分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.
(1)求证:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的长.
【答案】(1)证明:∵△BDC′由△BDC翻折而成,
∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。
在△ABG≌△C′DG中,∵∠BAG=∠C,AB= C′D,∠ABG=∠AD C′,
∴△ABG≌△C′DG(ASA)。
(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。
设AG=x,则GB=8﹣x,
在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(8﹣x)2,解得x=。
∴。
(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=AD=4。
∵tan∠ABG=tan∠ADE=。∴EH=HD×=4×。
∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线。∴HF=AB=×6=3。
∴EF=EH+HF=。
【考点】翻折变换(折叠问题),翻折变换的性质,矩形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数定义,三角形中位线定理。
【分析】(1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论。
(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=8-x,在Rt△ABG中利用勾股定理即可求出AG的长,从而得出tan∠ABG的值。
(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG的值即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。
5. (2012广东珠海9分) 已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.
(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);
(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;
(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.
【答案】解:(1)PO与BC的位置关系是PO∥BC。
(2)(1)中的结论PO∥BC成立。理由为:
由折叠可知:△APO≌△CPO,∴∠APO=∠CPO。
又∵OA=OP,∴∠A=∠APO。∴∠A=∠CPO。
又∵∠A与∠PCB都为所对的圆周角,∴∠A=∠PCB。∴∠CPO=∠PCB。
∴PO∥BC。
(3)证明:∵CD为圆O的切线,∴OC⊥CD。
又∵AD⊥CD,∴OC∥AD。∴∠APO=∠COP。
由折叠可得:∠AOP=∠COP,∴∠APO=∠AOP。
又∵OA=OP,∴∠A=∠APO。∴∠A=∠APO=∠AOP。∴△APO为等边三角形。
∴∠AOP=60°。
又∵OP∥BC,∴∠OBC=∠AOP=60°。
又∵OC=OB,∴△BC为等边三角形。∴∠COB=60°。
∴∠POC=180°﹣(∠AOP+∠COB)=60°。
又∵OP=OC,∴△POC也为等边三角形。∴∠PCO=60°,PC=OP=OC。
又∵∠OCD=90°,∴∠PCD=30°。
在Rt△PCD中,PD=PC,
又∵PC=OP=AB,∴PD=AB,即AB=4PD。
【考点】折叠的性质,圆心角、弧、弦的关系,圆周角定理,平行的判定和性质,切线的性质,全等三角形的性质,等腰三角形的性质,等边三角形的判定和性质,含30度角的直角三角形的性质。
【分析】(1)由折叠可得,由∠AOP=∠POC ;因为∠AOC和∠ABC是弧所对的圆心角和圆周角,根据同弧所对圆周角是圆心角一半的性质,得∠AOP=∠ABC;根据同位角相等两直线平行的判定,得PO与BC的位置关系是平行。
(2)(1)中的结论成立,理由为:由折叠可知三角形APO与三角形CPO全等,根据全等三角形的对应角相等可得出∠APO=∠CPO,再由OA=OP,利用等边对等角得到∠A=∠APO,等量代换可得出∠A=∠CPO,又根据同弧所对的圆周角相等得到∠A=∠PCB,再等量代换可得出∠COP=∠ACB,利用内错角相等两直线平行,可得出PO与BC平行。
(3)由CD为圆O的切线,利用切线的性质得到OC⊥CD,又AD⊥CD,利用平面内垂直于同一条直线的两直线平行得到OC∥AD,根据两直线平行内错角相等得到∠APO=∠COP,再利用折叠的性质得到∠AOP=∠COP,等量代换可得出∠APO=∠AOP,再由OA=OP,利用等边对等角可得出一对角相等,等量代换可得出△AOP三内角相等,确定出△AOP为等边三角形,根据等边三角形的内角为60°得到
∠AOP=60°,由OP∥BC,利用两直线平行同位角相等可得出∠OBC=∠AOP=60°,再由OB=OC,得到△OBC为等边三角形,可得出∠COB为60°,利用平角的定义得到∠POC也为60°,再加上OP=OC,可得出△POC为等边三角形,得到内角∠OCP=60°,可求出∠PCD=30°,在Rt△PCD中,利用30°所对的直角边等于斜边的一半可得出PD为PC的一半,而PC=圆的半径OP=直径AB的一半,可得出PD为AB的四分之一,即AB=4PD,得证。
6. (2012广西南宁10分)如图,已知矩形纸片ABCD,AD=2,AB=4.将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB,CD交于点G,F,AE与FG交于点O.
(1)如图1,求证:A,G,E,F四点围成的四边形是菱形;
(2)如图2,当△AED的外接圆与BC相切于点N时,求证:点N是线段BC的中点;
(3)如图2,在(2)的条件下,求折痕FG的长.
【答案】解:(1)由折叠的性质可得,GA=GE,∠AGF=∠EGF,
∵DC∥AB,∴∠EFG=∠AGF。∴∠EFG=∠EGF。∴EF=EG=AG。
∴四边形AGEF是平行四边形(EF∥AG,EF=AG)。
又∵AG=GE,∴四边形AGEF是菱形。
(2)连接ON,
∵△AED是直角三角形,AE是斜边,点O是AE的中点,
△AED的外接圆与BC相切于点N,
∴ON⊥BC。
∵点O是AE的中点,∴ON是梯形ABCE的中位线。
∴点N是线段BC的中点。
(3)∵OE、ON均是△AED的外接圆的半径,∴OE=OA=ON=2。∴AE=AB=4。
在Rt△ADE中,AD=2,AE=4,∴∠AED=30°。
在Rt△OEF中,OE=2,∠AED=30°,∴。∴FG=。
【考点】翻折变换(折叠问题),折叠对称的性质,菱形的判定,梯形中位线性质,锐角三角函数定义,特殊角的三角函数值。
【分析】(1)根据折叠的性质判断出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,从而
判断出EF=AG,得出四边形AGEF是平行四边形,从而结合AG=GE,可得出结论。
(2)连接ON,则ON⊥BC,从而判断出ON是梯形ABCE的中位线,从而可得出结论。
(3)根据(1)可得出AE=AB,从而在Rt△ADE中,可判断出∠AED为30°,在Rt△EFO中求
出FO,从而可得出FG的长度。
7. (2012湖北天门、仙桃、潜江、江汉油田12分)如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.
(1)求抛物线解析式及点D坐标;
(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;
(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.
【答案】解:(1)∵抛物线y=ax2+bx+2经过A(﹣1,0),B(4,0)两点,
∴,解得:。
∴抛物线解析式为。
当y=2时,,解得:x1=3,x2=0(舍去)。
∴点D坐标为(3,2)。
(2)A,E两点都在x轴上,AE有两种可能:
①当AE为一边时,AE∥PD,∴P1(0,2)。
②当AE为对角线时,根据平行四边形对顶点到另一条对角线距离相等,可知P点、D点到直线AE(即x轴)的距离相等,∴P点的纵坐标为﹣2。
代入抛物线的解析式:,解得:。
∴P点的坐标为(,﹣2),(,﹣2)。
综上所述:P1(0,2);P2(,﹣2);P3(,﹣2)。
(3)存在满足条件的点P,显然点P在直线CD下方。
设直线PQ交x轴于F,点P的坐标为(),
①当P点在y轴右侧时(如图1),CQ=a,
PQ=。
又∵∠CQ′O+∠FQ′P=90°,∠COQ′=∠Q′FP=90°,
∴∠FQ′P=∠OCQ′,∴△COQ′∽△Q′FP,
∴,即,解得F Q′=a﹣3
∴OQ′=OF﹣F Q′=a﹣(a﹣3)=3,
。
此时a=,点P的坐标为()。
②当P点在y轴左侧时(如图2)此时a<0,,<0,CQ=﹣a,
PQ=。
又∵∠CQ′O+∠FQ′P=90°,∠CQ′O+∠OCQ′=90°,
∴∠FQ′P=∠OCQ′,∠COQ′=∠Q′FP=90°。
∴△COQ′∽△Q′FP。
∴,即,解得F Q′=3﹣a。
∴OQ′=3,。
此时a=﹣,点P的坐标为()。
综上所述,满足条件的点P坐标为(),()。
【考点】二次函数综合题,曲线上点的坐标与方程的关系,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理。
【分析】(1)用待定系数法可得出抛物线的解析式,令y=2可得出点D的坐标。
(2)分两种情况进行讨论,①当AE为一边时,AE∥PD,②当AE为对角线时,根据平行四边形对顶点到另一条对角线距离相等,求解点P坐标。
(3)结合图形可判断出点P在直线CD下方,设点P的坐标为(),分情况讨论,①当P点在y轴右侧时,②当P点在y轴左侧时,运用解直角三角形及相似三角形的性质进行求解即可。
8. (2012湖北宜昌11分)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E为底AD上一点,将△ABE沿直线BE折叠,点A落在梯形对角线BD上的G处,EG的延长线交直线BC于点F.
(1)点E可以是AD的中点吗?为什么?
(2)求证:△ABG∽△BFE;
(3)设AD=a,AB=b,BC=c
①当四边形EFCD为平行四边形时,求a,b,c应满足的关系;
②在①的条件下,当b=2时,a的值是唯一的,求∠C的度数.
【答案】解:(1)不可以。理由如下:
根据题意得:AE=GE,∠EGB=∠EAB=90°,∴Rt△EGD中,GE<ED。
∴AE<ED。∴点E不可以是AD的中点。
(2)证明:∵AD∥BC,∴∠AEB=∠EBF,
∵由折叠知△EAB≌△EGB,∴∠AEB=∠BEG。∴∠EBF=∠BEF。
∴FE=FB,∴△FEB为等腰三角形。
∵∠ABG+∠GBF=90°,∠GBF+∠EFB=90°,∴∠ABG=∠EFB。
在等腰△ABG和△FEB中,
∠BAG=(180°﹣∠ABG)÷2,∠FBE=(180°﹣∠EFB)÷2,
∴∠BAG=∠FBE。∴△ABG∽△BFE。
(3)①∵四边形EFCD为平行四边形,∴EF∥DC。
∵由折叠知,∠DAB=∠EGB=90°,∴∠DAB=∠BDC=90°。
又∵AD∥BC,∴∠ADB=∠DBC。∴△ABD∽△DCB。
∴。
∵AD=a,AB=b,BC=c,∴BD=
∴,即a2+b2=ac。
②由①和b=2得关于a的一元二次方程a2﹣ac+4=0,
由题意,a的值是唯一的,即方程有两相等的实数根,
∴△=0,即c2﹣16=0。
∵c>0,∴c=4。
∴由a2﹣4a+4=0,得a=2。
由①△ABD∽△DCB和a= b=2,得△ABD和△DCB都是等腰直角三角形,
∴∠C=45°。
【考点】翻折变换(折叠问题),直角梯形的性质,三角形三边关系,直线平行的性质,等腰(直角)三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,勾股定理,一元二次方程根的判别式。
【分析】(1)根据折叠的性质可得AE=GE,∠EGB=∠EAB=90°,再根据直角三角形斜边大于直角边可得DE>EG,从而判断点E不可能是AD的中点。
(2)根据两直线平行,内错角相等可得∠AEB=∠EBF,再根据折叠的性质可以判定出∠AEB=∠BEG,然后得到∠EBF=∠BEF,从而判断出△FEB为等腰三角形,再根据等角的余角相等求出∠ABG=∠EFB,然后根据等腰三角形的两个底角相等求出∠BAG=∠FBE,然后根据两角对应相等,两三角形相似即可证明。
(3)①根据勾股定理求出BD的长度,再利用两角对应相等,两三角形相似得到△ABD和△DCB相似,然后根据相似三角形对应边成比例列式计算即可得解。
②把b=2代入a、b、c的关系式,根据a是唯一的,可以判定△=c2﹣16=0,然后求出c=4,再代入方程求出a=2,然后由①△ABD∽△DCB和a= b=2,得△ABD和△DCB都是等腰直角三角形,得出∠C=45°。
9. (2012江西南昌12分)已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.
(1)①折叠后的所在圆的圆心为O′时,求O′A的长度;
②如图2,当折叠后的经过圆心为O时,求的长度;
③如图3,当弦AB=2时,求圆心O到弦AB的距离;
(2)在图1中,再将纸片⊙O沿弦CD折叠操作.
①如图4,当AB∥CD,折叠后的与所在圆外切于点P时,设点O到弦AB.CD的距离之和为d,求d的值;
②如图5,当AB与CD不平行,折叠后的与所在圆外切于点P时,设点M为AB的中点,点N为CD的中点,试探究四边形OMPN的形状,并证明你的结论.
【答案】解:(1)①折叠后的所在圆O′与⊙O是等圆,∴O′A=OA=2。
②当经过圆O时,折叠后的所在圆O′在⊙O上,如图2所示,连接O′A.OA.O′B,OB,OO′。
∵△OO′A,△OO′B为等边三角形,∴∠AO′B=∠AO′O+∠BO′O=60°+60°=120°。
∴的长度。
③如图3所示,连接OA,OB,
∵OA=OB=AB=2,
∴△AOB为等边三角形。
过点O作OE⊥AB于点E,∴OE=OA•sin60°=。
∴圆心O到弦AB的距离为。
(2)①如图4,当折叠后的与所在圆外切于点P时,
过点O作EF⊥AB交AB于点H、交于点E,交CD于点G、交于点F,即点E、H、P、O、G、F在直径EF上。
∵AB∥CD,∴EF垂直平分AB和CD。
根据垂径定理及折叠,可知PH=PE,PG=PF。
又∵EF=4,∴点O到AB.CD的距离之和d为:
d=PH+PG=PE+PF=(PE+PF)=2。
②如图5,当AB与CD不平行时,四边形是OMPN平行四边形。证明如下:
设O′,O″为和所在圆的圆心,
∵点O′与点O关于AB对称,点O″于点O关于CD对称,
∴点M为的OO′中点,点N为OO″的中点。
∵折叠后的与所在圆外切,
∴连心线O′O″必过切点P。
∵折叠后的与所在圆与⊙O是等圆,
∴O′P=O″P=2,∴PM=OO″=ON,PN=OO′=OM,
∴四边形OMPN是平行四边形。
【考点】翻折变换(折叠问题)相切两圆的性质,等边三角形的判定和性质,平行四边形的判定,垂径定理,弧长的计算,解直角三角形,三角形中位线定理。
【分析】(1)①折叠后的所在圆O′与⊙O是等圆,可得O′A的长度。
②如图2,过点O作OE⊥AB交⊙O于点E,连接OA.OB.AE、BE,可得△OAE、△OBE为等边三角形,从而得到的圆心角,再根据弧长公式计算即可。
③如图3,连接OA.OB,过点O作OE⊥AB于点E,可得△AOB为等边三角形,根据三角函数的知识可求折叠后求圆心O到弦AB的距离。
(2)①如图4,与所在圆外切于点P时,过点O作EF⊥AB交于点E,交于点F,根据垂径定理及折叠,可求点O到AB.CD的距离之和。
②由三角形中位线定理,根据两组对边分别相等的四边形是平行四边形即可得证。
10. (2012湖南益阳10分)已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.
(1)求原抛物线的解析式;
(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,结果可保留根号)
【答案】解:(1)∵P与P′(1,3)关于x轴对称,∴P点坐标为(1,﹣3)。
∵抛物线y=a(x﹣1)2+c顶点是P(1,﹣3),
∴抛物线解析式为y=a(x﹣1)2﹣3。
∵抛物线y=a(x﹣1)2﹣3过点A,
∴a(﹣1)2﹣3=0,解得a=1。
∴抛物线解析式为y=(x﹣1)2﹣3,即y=x2﹣2x﹣2。
(2)∵CD平行x轴,P′(1,3)在CD上,∴C、D两点纵坐标为3。
由(x﹣1)2﹣3=3,解得:。
∴C、D两点的坐标分别为。∴CD=。
∴“W”图案的高与宽(CD)的比=(或约等于0.6124)。
【考点】二次函数的应用,翻折对称的性质,二次函数的性质,曲线上点的坐标与方程的关系。
【分析】(1)利用P与P′(1,3)关于x轴对称,得出P点坐标,利用待定系数法求出二次函数的解析式即可。
(2)根据已知求出C,D两点坐标,从而得出“W”图案的高与宽(CD)的比。
11. (2012山东德州12分)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
【答案】解:(1)如图1,∵PE=BE,∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH﹣∠EPB=∠EBC﹣∠EBP,即∠PBC=∠BPH。
又∵AD∥BC,∴∠APB=∠PBC。∴∠APB=∠BPH。
(2)△PHD的周长不变为定值8。证明如下:
如图2,过B作BQ⊥PH,垂足为Q。
由(1)知∠APB=∠BPH,
又∵∠A=∠BQP=90°,BP=BP,
∴△ABP≌△QBP(AAS)。∴AP=QP,AB=BQ。
又∵AB=BC,∴BC=BQ。
又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH(HL)。∴CH=QH。
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8。
(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB。
又∵EF为折痕,∴EF⊥BP。
∴∠EFM+∠MEF=∠ABP+∠BEF=90°。∴∠EFM=∠ABP。
又∵∠A=∠EMF=90°,AB=ME,∴△EFM≌△BPA(ASA)。
∴EM=AP=x.
∴在Rt△APE中,(4﹣BE)2+x2=BE2,即。
∴。
又∵四边形PEFG与四边形BEFC全等,
∴。
∵,∴当x=2时,S有最小值6。
【考点】翻折变换(折叠问题),正方形的性质,折叠的性质,全等三角形的判定和性质,勾股定理,二次函数的最值。
【分析】(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案。
(2)先由AAS证明△ABP≌△QBP,从而由HL得出△BCH≌△BQH,即可得CH=QH。因此,△PDH的周长=PD+DH+PH=AP+PD+DH+HC=AD+CD=8为定值。
(3)利用已知得出△EFM≌△BPA,从而利用在Rt△APE中,(4﹣BE)2+x2=BE2,利用二次函数的最值求出即可。
12. (2012浙江衢州10分)课本中,把长与宽之比为的矩形纸片称为标准纸.请思考解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明.
(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:
第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);
第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;
第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.
请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由.
(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长.
【答案】解:(1)证明: ∵矩形ABCD是标准纸,∴。
由对开的含义知:AF=BC,∴。
∴矩形纸片ABEF也是标准纸。
(2)是标准纸,理由如下:
设AB=CD=a,由图形折叠可知:DN=CD=DG=a,DG⊥EM。
∵由图形折叠可知:△ABE≌△AFE,∴∠DAE=∠BAD=45°。
∴△ADG是等腰直角三角形。
∴在Rt△ADG中,AD=,
∴,∴矩形纸片ABCD是一张标准纸。
(3)对开次数:
第一次,周长为:,
第二次,周长为:,
第三次,周长为:,
第四次,周长为:,
第五次,周长为:,
第六次,周长为:,
…
∴第5次对开后所得标准纸的周长是:,
第2012次对开后所得标准纸的周长为:。
【考点】翻折变换(折叠问题),全等三角形的判定和性质,勾股定理,等腰直角三角形,矩形的性质,图形的剪拼,分类归纳(图形的变化类)。
【分析】(1)根据,得出矩形纸片ABEF也是标准纸。
(2)利用已知得出△ADG是等腰直角三角形,得出,即可得出答案。
(3)分别求出每一次对折后的周长,从而得出变化规律求出即可:观察变化规律,得
第n次对开后所得标准纸的周长=。
13. (2012黑龙江大庆9分)在直角坐标系中,C(2,3),C′(-4,3), C″(2,1),D(-4,1),A(0,
),B(,O)( 0).
(1)结合坐标系用坐标填空.
点C与C′关于点 对称; 点C与C″关于点 对称; 点C与D关于点 对称
(2)设点C关于点(4,2)的对称点是点P,若△PAB的面积等于5,求值.
【答案】解:(1)(﹣1,3);(2,2);(﹣1,2)。
(2)点C关于点(4,2)的对称点P(6,1),
△PAB的面积=(1+a)×6﹣a2﹣×1×(6﹣a)=5,
整理得,a2﹣7a+10=0,解得a1=2,a2=5。
所以,a的值为2或5。
【考点】网格问题,坐标与图形的对称变化,坐标与图形性质,三角形的面积。
【分析】(1)根据对称的性质,分别找出两对称点连线的中点即可:由图可知,点C与C′关于点(﹣1,3)对称; 点C与C″关于点(2,2)对称;点C与D关于点(﹣1,2)对称。
(2)先求出点P的坐标,再利用△APB所在的梯形的面积减去两个直角三角形的面积,然后列式计算即可得解。
14. (2012福建龙岩13分)矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对
应点A′落在线段BC上,再打开得到折痕EF.
(1)当A′与B重合时(如图1),EF= ;当折痕EF过点D时(如图2),求线段EF的长;
(2)观察图3和图4,设BA′=x,①当x的取值范围是 时,四边形AEA′F是菱形;②在①的
条件下,利用图4证明四边形AEA′F是菱形.
【答案】解:(1)5。
由折叠(轴对称)性质知A′D=AD=5,∠A=∠EA′D=900。
在Rt△A′DC中,DC=AB=2,∴ 。
∴A′B=BC-A′C=5-4=1。
∵∠EA′B+∠BEA′=∠EA′B+∠FA′C=900, ∴∠BEA′=∠FA′C。
又 ∵∠B=∠C=900,∴Rt△EBA′∽Rt△A′CF。∴,即
∴ 。
在Rt△A′EF中,。
(2)①。
②证明:由折叠(轴对称)性质知∠AEF=∠FEA′,AE=A′E,AF=A′F。
又 ∵AD∥BC,∴∠AFE=∠FEA′ 。∴∠AEF=∠AFE 。
∴AE=AF。∴AE=A′E=AF=A′F。
∴四边形AEA′F是菱形。
【考点】折叠的性质,矩形的性质,勾股定理,相似三角形的判定和性质,平行的性质,等腰三角形的性质,菱形的判定。
【分析】(1)根据折叠和矩形的性质,当A′与B重合时(如图1),EF= AD=5。
根据折叠和矩形的性质,以及勾股定理求出A′B、A′F和FC的长,由Rt△EBA′∽Rt△A′CF求得,在Rt△A′EF中,由勾股定理求得EF的长。
(2)①由图3和图4可得,当时,四边形AEA′F是菱形。
②由折叠和矩形的性质,可得AE=A′E,AF=A′F。由平行和等腰三角形的性质可得AE=AF。从而AE=A′E=AF=A′F。根据菱形的判定得四边形AEA′F是菱形。
15. (2012广西贵港12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,
-1),交x轴于A、B两点,交y轴于点C,其中点B的坐标为(3,0)。
(1)求该抛物线的解析式;
(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线
CD的解析式;
(3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线
OP与该抛物线交点的个数。
【答案】解:(1)∵抛物线y=ax2+bx+3的顶点为M(2,-1),
∴设抛物线的解析式为线。
∵点B(3,0)在抛物线上,∴,解得。
∴该抛物线的解析式为,即。
(2)在中令x=0,得。∴C(0,3)。
∴OB=OC=3。∴∠ABC=450。
过点B作BN⊥x轴交CD于点N(如图),
则∠ABC=∠NBC=450。
∵直线CD和直线CA关于直线BC对称,
∴∠ACB=∠NCB。
又∵CB=CB,∴△ACB≌△NCB(ASA)。
∴BN=BA。
∵A,B关于抛物线的对称轴x=2对称,B(3,0),
∴A(1,0)。∴BN=BA=2。∴N(3,2)。
设直线CD的解析式为,
∵C(0,3),N(3,2)在直线CD上,
∴,解得,。
∴直线CD的解析式为。
(3)设P(2,p)。
∵M(2,-1),B(3,0),C(0,3),
∴根据勾股定理,得,,
。
∵PM2+PB2+PC2=35,∴。
整理,得,解得。
∴P(2,-2)或(2,)。
当P(2,-2)时,直线OP与该抛物线无交点;当P(2,)时,直线OP与该抛物
线有两交点。
【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质,轴对称的性质,全等三角形的判定和性质,勾股定理,一元二次方程根的判别式。
【分析】(1)由于已知抛物线的顶点坐标,所以可设抛物线的顶点式,用待定系数法求解。
(2)由直线CD和直线CA关于直线BC对称,构造全等三角形:过点B作BN⊥x轴交CD于点N,求出点N的坐标,由点B,N的坐标,用待定系数法求出直线CD的解析式。
(3)设P(2,p),根据勾股定理分别求出PM2、PB2和PC2,由PM2+PB2+PC2=35,列式求解即可求得点P的坐标(2,-2)或(2,)。
当P(2,-2)时,直线OP的解析式为,与联立,得,
即。∵△=9-12=-3<0,∴无解,即直线OP与抛物线无交点。
当P(2,)时,直线OP的解析式为,与联立,得,
即。∵△=289-108=181>0,∴有两不相等的实数根,即直线OP与抛物线有两个交点。
16. (2012青海省12分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.
【答案】解:(1)将B、C两点的坐标代入y=x2+bx+c得,解得。
∴二次函数的表达式为:y=x2﹣2x﹣3。
(2)存在点P,使四边形POP′C为菱形。
设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E,
若四边形POP′C是菱形,则有PC=PO。
连接PP′,则PE⊥CO于E。
∴OE=EC=。
∴x2﹣2x﹣3=,
解得(不合题意,舍去)。
∴P点的坐标为()。
(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x﹣3),
设直线BC的解析式为y=kx+b,则
,解得。∴直线BC的解析式为y=x﹣3。
则Q点的坐标为(x,x﹣3)。
∴
∴当时,四边形ABPC的面积最大,此时P点的坐标为,四边形ABPC的面积的最大值为。
【考点】二次函数综合题,曲线上点的坐标与方程的关系,翻折的性质,菱形的判定和性质,二次函数最值。190187
【分析】(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值。
(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标。
(3)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标。
17. (2012江西省10分)已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.
(1)如图2,折叠后的所在圆的圆心为O′时,求的长度;
(2)如图3,当弦AB=2时,求折叠后所在圆的圆心O’到弦AB的距离;
(3)在图1中,再将纸片⊙O沿弦CD折叠操作.
①如图4,当AB∥CD,折叠后的与所在圆外切于点P时,设点O到弦AB.CD的距离之和为d,求d的值;
②如图5,当AB与CD不平行,折叠后的与所在圆外切于点P时,设点M为AB的中点,点N为CD的中点,试探究四边形OMPN的形状,并证明你的结论.
【答案】解:(1)当经过圆O时,折叠后的所在圆O′在⊙O上,如图2所示,连接O′A.OA.O′B,OB,OO′。
∵△OO′A,△OO′B为等边三角形,
∴∠AO′B=∠AO′O+∠BO′O=60°+60°=120°。
∴的长度。
(2)如图3所示,连接O′A,O′B,
∵O′A=O′B=AB=2,
∴△AOB为等边三角形。
过点O作OE⊥AB于点E,∴O′E=O′A•sin60°=。
∴折叠后所在圆的圆心O’到弦AB的距离为。
(3)①如图4,当折叠后的与所在圆外切于点P时,
过点O作EF⊥AB交AB于点H、交于点E,交CD于点G、交于点F,即点E、H、P、O、G、F在直径EF上。
∵AB∥CD,∴EF垂直平分AB和CD。
根据垂径定理及折叠,可知PH=PE,PG=PF。
又∵EF=4,∴点O到AB.CD的距离之和d为:
d=PH+PG=PE+PF=(PE+PF)=2。
②如图5,当AB与CD不平行时,四边形是OMPN平行四边形。证明如下:
设O′,O″为和所在圆的圆心,
∵点O′与点O关于AB对称,点O″于点O关于CD对称,
∴点M为的OO′中点,点N为OO″的中点。
∵折叠后的与所在圆外切,
∴连心线O′O″必过切点P。
∵折叠后的与所在圆与⊙O是等圆,
∴O′P=O″P=2,∴PM=OO″=ON,PN=OO′=OM,
∴四边形OMPN是平行四边形。
【考点】翻折变换(折叠问题)相切两圆的性质,等边三角形的判定和性质,平行四边形的判定,垂径定理,弧长的计算,解直角三角形,三角形中位线定理。
【分析】(1)如图2,过点O作OE⊥AB交⊙O于点E,连接OA.OB.AE、BE,可得△OAE、△OBE为等边三角形,从而得到的圆心角,再根据弧长公式计算即可。
(2)如图3,连接O′A.O′B,过点O′作O′E⊥AB于点E,可得△AO′B为等边三角形,根据三角函数的知识可求折叠后求所在圆的圆心O′到弦AB的距离。
(3)①如图4,与所在圆外切于点P时,过点O作EF⊥AB交于点E,交于点F,根据垂径定理及折叠,可求点O到AB.CD的距离之和。
②由三角形中位线定理,根据两组对边分别相等的四边形是平行四边形即可得证。