- 1.19 MB
- 2021-05-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
资阳市2010年高中阶段教育学校招生统一考试
数 学
全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.
答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.
第Ⅰ卷(选择题 共30分)
注意事项:
每小题选出的答案不能答在试卷上,须用2B铅笔在答题卡上把对应题目的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.
一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.
1. -3的绝对值是( )
A. 3 B. -3 C. D.
2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )
A. 5 400 000 B. 54 000 000 C. 540 000 000 D. 5 400 000 000
图1
3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )
A. 全班总人数
B. 喜欢篮球活动的人数最多
C. 喜欢各种课外活动的具体人数
D. 喜欢各种课外活动的人数占本班总人数的百分比
4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )
A. 1 B. 2 C. 3 D. 4
5. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( )
A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥
图2
6. 若实数a、b满足,,则的值是( )
A. -2 B. 2
C. -50 D. 50
7. 如图2,A为⊙O上一点,从A处射出的光线经圆周4次反射后到达F处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE的度数是( )
A. 30° B. 40°
C. 50° D. 80°
8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,
他与起点的距离为s,所用时间为t,则s与t的函数关系用图象可表示为( )
A. B. C. D.
图3
9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”. 如图3,若正方形ABCD由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n个有“公共部分”,则n的最大值为( )
A. 4 B. 5
C. 6 D. 7
图4
10. 如图4,已知点A1,A2,…,A2011在函数位于第二象限的图象上,点B1,B2,…,B2011在函数位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形、,…,都是正方形,则正方形的边长为( )
A. 2010 B. 2011
C. 2010 D. 2011
第Ⅱ卷(非选择题 共90分)
题号
二
三
总 分
总分人
17
18
19
20
21
22
23
24
25
得分
注意事项:
本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.
二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.
图5
11. 9的平方根为____________.
12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .
13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.
14. 若关于x的方程无实数根,则实数m的取值范围是____________.
图6
15. 如图6,已知△ABC是等腰直角三角形,CD是斜边AB的中线,△ADC绕点D旋转一定角度得到△,交AC于点E,交BC于点F,连接EF,若,则=_________ .
16. 给出下列命题:① 若方程的两根分别为,,则;② 对于任意实数x、y,都有;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a※b=3a-b. 其中所有正确命题的序号是__________________ .
三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.
17.(本小题满分7分)
化简:.
18.(本小题满分7分)
在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.
(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率;
(2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?
19.(本小题满分8分)
如图7,已知A、B、C是数轴上异于原点O的三个点,且O为AB的中点,B为AC的中点. 若点B对应的数是x,点C对应的数是-3x,求x的值.
图7
20.(本小题满分8分)
已知关于x的不等式组有且只有三个整数解,求a的取值范围.
21.(本小题满分8分)
图8
如图8,已知直线l:y=kx+b与双曲线C:相交于点A(1,3)、B(,-2),点A关于原点的对称点为P.
(1) 求直线l和双曲线C对应的函数关系式;
(2) 求证:点P在双曲线C上;
(3) 找一条直线l1,使△ABP沿l1翻折后,点P能落在双曲线C上.
(指出符合要求的l1的一个解析式即可,不需说明理由)
22.(本小题满分8分)
图9
在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A处掩护,乙队员从A处沿12点方向以40米/分的速度前进,2分钟后到达B处. 这时,甲队员发现在自己的1点方向的C处有恐怖分子,乙队员发现C处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.
(1) 乙队员是否处于安全位置?为什么?
(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少应用多快的速度撤离?(结果精确到个位. 参考数据:0,.)
图10-1
图10-2
23.(本小题满分8分)
如图10-1,已知AB是⊙O的直径,直线l与⊙O相切于点B,直线m垂直AB于点C,交⊙O于P、Q两点. 连结AP,过O作OD∥AP交l于点D,连接AD与m交于点M.
(1) 如图10-2,当直线m过点O时,求证:M是PO的中点;
(2) 如图10-1,当直线m不过点O时,M是否仍为PC的中点?证明你的结论.
24.(本小题满分9分)
如图11,在直角梯形ABCD中,已知AD∥BC,AB=3,AD=1,BC=6,∠A=∠B=90°. 设动点P、Q、R在梯形的边上,始终构成以P为直角顶点的等腰直角三角形,且△PQR的一边与梯形ABCD的两底边平行.
(1) 当点P在AB边上时,在图中画出一个符合条件的△PQR (不必说明画法);
图11
(2) 当点P在BC边或CD边上时,求BP的长.
25.(本小题满分9分)
如图12,已知直线交y轴于点A,交x轴于点B,直线l:交x轴于点C.
(1) 求经过A、B、C三点的抛物线的函数关系式,并指出此函数的函数值随x的增大而增大时,x的取值范围;
(2) 若点E在(1)中的抛物线上,且四边形ABCE是以BC为底的梯形,求梯形ABCE的面积;
图12
(3) 在(1)、(2)的条件下,过E作直线EF⊥x轴,垂足为G,交直线l于F. 在抛物线上是否存在点H,使直线l、直线FH和x轴所围成的三角形的面积恰好是梯形ABCE面积的?若存在,求点H的横坐标;若不存在,请说明理由.
资阳市2010年高中阶段教育学校招生统一考试
数学试题参考答案及评分意见
说 明:
1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.
2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.
3. 考生的解答可以根据具体问题合理省略非关键步骤.
4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.
5. 给分和扣分都以1分为基本单位.
6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.
一、选择题(每小题3分,共10个小题,满分30分):
1-5. ABDCB;6-10. ABCCD.
二、填空题(每小题3分,共6个小题,满分18分):
11.±3;12.800元;13. 120°;14.m<0;15.;16.①②④.
(注:12、13题有无单位“元”或“°”均不扣分. )
三、解答题(共9个小题,满分72分):
17.解:原式= 3分
= 5分
=. 7分
18.(1) 解一:列表如下:
1
2
3
4
5
6
第一张
物种
物种
星球
星球
未来
未来
第二张
星球
未来
物种
未来
星球
物种
第三张
未来
星球
未来
物种
物种
星球
3分
∴ 第一张是“物种”且第二张是“星球”的概率是. 4分
解二:树状图如下:
3分
∴ 第一张是“物种”且第二张是“星球”的概率是. 4分
(2) 这个规定不公平. 5分
因为观众获胜的概率是,主持人获胜的概率是. 7分
19.解:由已知,点O是AB的中点,点B对应的数是x,
∴ 点A对应的实数为-x. 1分
∵ 点B是AC的中点,点C对应的数是-3x,
∴ (-3x)-x=x-(-x). 4分
整理,得-6x=0,解之得 x=0,或x=6. 6分
∵ 点B异于原点,故x=0应舍去. ∴ x的值为6. 7分
20.解:由得,x>2; 2分
由得,x