- 904.50 KB
- 2021-05-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
绝密★启用前 试卷类型:A
山东省淄博市二〇一七年初中学业水平考试
数学试题
(试卷满分为120分,考试时间为120分钟)
2017年山东省淄博市中考数学试卷
一、选择题(本大题共12小题,每小题4分,共48分)
1.的相反数是( )
A. B. C. D.
3.下列几何体中,其主视图为三角形的是( )
A. B. C. D.
4.下列运算正确的是( )
A. B.
C.(a≠0) D.
5.若分式的值为零,则x的值是( )
A.1 B.﹣1 C.±1 D.2
6.若a+b=3,,则ab等于( )
A.2 B.1 C.﹣2 D.﹣1
7.将二次函数的图象沿x轴向右平移2个单位长度,得到的函数表达式是( )
A. B.
C. D.
8.若关于x的一元二次方程有两个不相等的实数根,则实数k的取值范围是( )
A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=0
9.如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是( )
A.2+π B.2+2π C.4+π D.2+4π
10.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )
A. B. C. D.
11.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( )
A. B.
C. D.
12.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为( )
A. B. C. D.
二、填空题(本大题共5小题,每小题4分,共20分)
13.分解因式:= .
14.已知α,β是方程的两个实数根,则的值为 .
15.运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:
则计算器显示的结果是 .
16.在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF= .
17.设△ABC的面积为1.
如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=.
如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;
如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;
…
按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CDnEnFn,其面积S= .
三、解答题(本大题共7小题,共52分)
18.解不等式:.
19.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.
20.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.
21.为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:
说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…
根据上述信息,解答下列问题:
(1)直接写出空气污染指数这组数据的众数 ,中位数 ;
(2)请补全空气质量天数条形统计图:
(3)根据已完成的条形统计图,制作相应的扇形统计图;
(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?
22.如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数(k>0)的图象经过BC边的中点D(3,1).
(1)求这个反比例函数的表达式;
(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.
①求OF的长;
②连接AF,BE,证明四边形ABEF是正方形.
23.如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.
(1)求证:△BFN∽△BCP;
(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);
②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.
24.如图1,经过原点O的抛物线
(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).
(1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.
2017年山东省淄博市中考数学试卷
参考答案与评分标准
一、选择题(本大题共12小题,每小题4分,共48分)
1-5.CADCA 6-10.BDBAB 11-12.DC
二、填空题(本大题共5小题,每小题4分,共20分)
13.(4分)2x(x﹣2)(x+2)
14.(4分)0
15.(4分)959
16.(4分)2
17.(4分)
三、解答题(本大题共7小题,共52分)
18.(5分)解:去分母得:3(x﹣2)≤2(7﹣x),
去括号得:3x﹣6≤14﹣2x,
移项合并得:5x≤20,
解得:x≤4.
19.(5分)证明:∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC.
∴∠BAE=∠DCF.
在△AEB和△CFD中,,
∴△AEB≌△CFD(SAS).
∴BE=DF.
20.(8分)解:设汽车原来的平均速度是x km/h,
根据题意得:﹣=2,
解得:x=70
经检验:x=70是原方程的解.
答:汽车原来的平均速度70km/h.
21.(8分)解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;
故答案为:90,90.
(2)由题意,得
轻度污染的天数为:30﹣3﹣15=12天.
(3)由题意,得
优所占的圆心角的度数为:3÷30×360=36°,
良所占的圆心角的度数为:15÷30×360=180°,
轻度污染所占的圆心角的度数为:12÷30×360=144°
(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天.
22.(8分)解:(1)∵反比例函数y=(k>0)的图象经过点D(3,1),
∴k=3×1=3,
∴反比例函数表达式为y=;
(2)①∵D为BC的中点,
∴BC=2,
∵△ABC与△EFG成中心对称,
∴△ABC≌△EFG,
∴GF=BC=2,GE=AC=1,
∵点E在反比例函数的图象上,
∴E(1,3),即OG=3,
∴OF=OG﹣GF=1;
②如图,连接AF、BE,
∵AC=1,OC=3,
∴OA=GF=2,
在△AOF和△FGE中
∴△AOF≌△FGE(SAS),
∴∠GFE=∠FAO=∠ABC,
∴∠GFE+∠AFO=∠FAO+∠BAC=90°,
∴EF∥AB,且EF=AB,
∴四边形ABEF为平行四边形,
∴AF=EF,
∴四边形ABEF为菱形,
∵AF⊥EF,
∴四边形ABEF为正方形.
23.(9分)(1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合,
∴MN垂直平分线段BP,
∴∠BFN=90°.
∵四边形ABCD为矩形,
∴∠C=90°.
∵∠FBN=∠CBP,
∴△BFN∽△BCP.
(2)解:①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.
②设⊙O与BC的交点为E,连接OB、OE,如图3所示.
∵△MDP为直角三角形,
∴AP为⊙O的直径,
∵BM与⊙O相切,
∴MP⊥BM.
∵MB=MP,
∴△BMP为等腰直角三角形.
∵∠AMB+∠PMD=180°﹣∠AMP=90°,∠MBA+∠AMB=90°,
∴∠PMD=∠MBA.
在△ABM和△DMP中,,
∴△ABM≌△DMP(AAS),
∴DM=AB=4,DP=AM.
设DP=2a,则AM=2a,OE=4﹣a,
BM==2.
∵BM=MP=2OE,
∴2=2×(4﹣a),
解得:a=,
∴DP=2a=3.
24.(9分)解:(1)∵B(2,t)在直线y=x上,
∴t=2,
∴B(2,2),
把A、B两点坐标代入抛物线解析式可得,解得,
∴抛物线解析式为y=2x2﹣3x;
(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,
∵点C是抛物线上第四象限的点,
∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),
∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,
∴S△OBC=S△CDO+S△CDB=CD•OE+CD•BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,
∵△OBC的面积为2,
∴﹣2t2+4t=2,解得t1=t2=1,
∴C(1,﹣1);
(3)存在.
设MB交y轴于点N,如图1,
∵B(2,2),
∴∠AOB=∠NOB=45°,
在△AOB和△NOB中
∴△AOB≌△NOB(ASA),
∴ON=OA=,
∴N(0,),
∴可设直线BN解析式为y=kx+,
把B点坐标代入可得2=2k+,解得k=,
∴直线BN的解析式为y=x+,
联立直线BN和抛物线解析式可得,解得或,
∴M(﹣,),
∵C(1,﹣1),
∴∠COA=∠AOB=45°,且B(2,2),
∴OB=2,OC=,
∵△POC∽△MOB,
∴==2,∠POC=∠BOM,
当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,
∵∠COA=∠BOG=45°,
∴∠MOG=∠POH,且∠PHO=∠MGO,
∴△MOG∽△POH,
∴===2,
∵M(﹣,),
∴MG=,OG=,
∴PH=MG=,OH=OG=,
∴P(,);
当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,
同理可求得PH=MG=,OH=OG=,
∴P(﹣,);
综上可知存在满足条件的点P,其坐标为(,)或(﹣,).