- 297.72 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2020年黑龙江省绥化市中考数学试卷
一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑
1.(3分)化简|2-3|的结果正确的是( )
A.2-3 B.-2-3 C.2+3 D.3-2
2.(3分)两个长方体按图示方式摆放,其主视图是( )
A. B.
C. D.
3.(3分)下列计算正确的是( )
A.b2•b3=b6 B.(a2)3=a6 C.﹣a2÷a=a D.(a3)2•a=a6
4.(3分)下列图形是轴对称图形而不是中心对称图形的是( )
A. B.
C. D.
5.(3分)下列等式成立的是( )
A.16=±4 B.3-8=2 C.﹣a1a=-a D.-64=-8
6.(3分)“十•一”国庆期间,学校组织466名八年级学生参加社会实践活动,现己准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆.根据题意,得( )
第27页(共27页)
A.x+y=1049x+37y=466 B.x+y=1037x+49y=466
C.x+y=46649x+37y=10 D.x+y=46637x+49y=10
7.(3分)如图,四边形ABCD是菱形,E、F分别是BC、CD两边上的点,不能保证△ABE和△ADF一定全等的条件是( )
A.∠BAF=∠DAE B.EC=FC C.AE=AF D.BE=DF
8.(3分)在一个不透明的袋子中装有黑球m个、白球n个、红球3个,除颜色外无其它差别,任意摸出一个球是红球的概率是( )
A.3m+n B.3m+n+3 C.m+nm+n+3 D.m+n3
9.(3分)将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是( )
A.y=2(x﹣6)2 B.y=2(x﹣6)2+4
C.y=2x2 D.y=2x2+4
10.(3分)如图,在Rt△ABC中,CD为斜边AB的中线,过点D作DE⊥AC于点E,延长DE至点F,使EF=DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:
①DE=12BC;
②四边形DBCF是平行四边形;
③EF=EG;
④BC=25.
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
第27页(共27页)
二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内
11.(3分)新型冠状病毒蔓延全球,截至北京时间2020年6月20日,全球新冠肺炎累计确诊病例超过8500000例,数字8500000用科学记数法表示为 .
12.(3分)甲、乙两位同学在近五次数学测试中,平均成绩均为90分,方差分别为S甲2=0.70,S乙2=0.73,甲、乙两位同学成绩较稳定的是 同学.
13.(3分)黑龙江省某企业用货车向乡镇运送农用物资,行驶2小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程y(km)与行驶时间x(h)的函数关系如图所示,2小时后货车的速度是 km/h.
14.(3分)因式分解:m3n2﹣m= .
15.(3分)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是 度.
16.(3分)在Rt△ABC中,∠C=90°,若AB﹣AC=2,BC=8,则AB的长是 .
17.(3分)在平面直角坐标系中,△ABC和△A1B1C1的相似比等于12,并且是关于原点O的位似图形,若点A的坐标为(2,4),则其对应点A1的坐标是 .
18.(3分)在函数y=x-3x+1+1x-5中,自变量x的取值范围是 .
19.(3分)如图,正五边形ABCDE内接于⊙O,点P为DE上一点(点P与点D,点E不重合),连接PC、PD,DG⊥PC,垂足为G,∠PDG等于 度.
20.(3分)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5
第27页(共27页)
倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程 .
21.(3分)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是 .
三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内
22.(6分)(1)如图,已知线段AB和点O,利用直尺和圆规作△ABC,使点O是△ABC的内心(不写作法,保留作图痕迹);
(2)在所画的△ABC中,若∠C=90°,AC=6,BC=8,则△ABC的内切圆半径是 .
23.(6分)如图,热气球位于观测塔P的北偏西50°方向,距离观测塔100km的A处,它沿正南方向航行一段时间后,到达位于观测塔P的南偏西37°方向的B处,这时,B处距离观测塔P有多远?(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19.)
24.(6分)如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O均为格点(每个小正方形的顶点叫做格点).
(1)作点A关于点O的对称点A1;
(2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1
第27页(共27页)
,画出旋转后的线段A1B1;
(3)连接AB1,求出四边形ABA1B1的面积.
25.(6分)为了解本校九年级学生体育测试项目“400米跑”的训练情况,体育教师在2019年1﹣5月份期间,每月随机抽取部分学生进行测试,将测试成绩分为:A,B,C,D四个等级,并绘制如图两幅统计图根据统计图提供的信息解答下列问题:
(1) 月份测试的学生人数最少, 月份测试的学生中男生、女生人数相等;
(2)求扇形统计图中D等级人数占5月份测试人数的百分比;
(3)若该校2019年5月份九年级在校学生有600名,请你估计出测试成绩是A等级的学生人数.
26.(7分)如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.
(1)求证:直线BG与⊙O相切;
(2)若BEOD=54,求EFAC的值.
第27页(共27页)
27.(7分)如图,在矩形OABC中,AB=2,BC=4,点D是边AB的中点,反比例函数y1=kx(x>0)的图象经过点D,交BC边于点E,直线DE的解析式为y2=mx+n(m≠0).
(1)求反比例函数y1=kx(x>0)的解析式和直线DE的解析式;
(2)在y轴上找一点P,使△PDE的周长最小,求出此时点P的坐标;
(3)在(2)的条件下,△PDE的周长最小值是 .
28.(9分)如图,在正方形ABCD中,AB=4,点G在边BC上,连接AG,作DE⊥AG于点E,BF⊥AG于点F,连接BE、DF,设∠EDF=α,∠EBF=β,BGBC=k.
(1)求证:AE=BF;
(2)求证:tanα=k•tanβ;
(3)若点G从点B沿BC边运动至点C停止,求点E,F所经过的路径与边AB围成的图形的面积.
第27页(共27页)
29.(10分)如图1,抛物线y=-12(x+2)2+6与抛物线y1=﹣x2+12tx+t﹣2相交y轴于点C,抛物线y1与x轴交于A、B两点(点B在点A的右侧),直线y2=kx+3交x轴负半轴于点N,交y轴于点M,且OC=ON.
(1)求抛物线y1的解析式与k的值;
(2)抛物线y1的对称轴交x轴于点D,连接AC,在x轴上方的对称轴上找一点E,使以点A,D,E为顶点的三角形与△AOC相似,求出DE的长;
(3)如图2,过抛物线y1上的动点G作GH⊥x轴于点H,交直线y2=kx+3于点Q,若点Q'是点Q关于直线MG的对称点,是否存在点G(不与点C重合),使点Q'落在y轴上?若存在,请直接写出点G的横坐标,若不存在,请说明理由.
第27页(共27页)
2020年黑龙江省绥化市中考数学试卷
参考答案与试题解析
一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑
1.(3分)化简|2-3|的结果正确的是( )
A.2-3 B.-2-3 C.2+3 D.3-2
【解答】解:∵2-3<0,
∴|2-3|=-(2-3)=3-2.
故选:D.
2.(3分)两个长方体按图示方式摆放,其主视图是( )
A. B.
C. D.
【解答】解:从正面看有两层,底层是一个矩形,上层是一个长度较小的矩形.
故选:C.
3.(3分)下列计算正确的是( )
A.b2•b3=b6 B.(a2)3=a6 C.﹣a2÷a=a D.(a3)2•a=a6
【解答】解:A.b2•b3=b5,故本选项不合题意;
B.(a2)3=a6,故本选项符合题意;
C.﹣a2÷a=﹣a,故本选项不合题意;
D.(a3)2•a=a7,故本选项不合题意.
故选:B.
4.(3分)下列图形是轴对称图形而不是中心对称图形的是( )
第27页(共27页)
A. B.
C. D.
【解答】解:A、既是轴对称图形又是中心对称图形,故本选项不符合题意;
B、既是轴对称图形又是中心对称图形,故本选项不符合题意;
C、是轴对称图形,不是中心对称图形,故本选项符合题意;
D、既是轴对称图形又是中心对称图形,故本选项不符合题意.
故选:C.
5.(3分)下列等式成立的是( )
A.16=±4 B.3-8=2 C.﹣a1a=-a D.-64=-8
【解答】解:A.16=4,故本选项不合题意;
B.3-8=-2,故本选项不合题意;
C.-a1a=-a,故本选项不合题意;
D.-64=-8,故本选项符合题意.
故选:D.
6.(3分)“十•一”国庆期间,学校组织466名八年级学生参加社会实践活动,现己准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆.根据题意,得( )
A.x+y=1049x+37y=466 B.x+y=1037x+49y=466
C.x+y=46649x+37y=10 D.x+y=46637x+49y=10
【解答】解:依题意,得:x+y=1049x+37y=466.
故选:A.
7.(3分)如图,四边形ABCD是菱形,E、F分别是BC、CD两边上的点,不能保证△ABE和△ADF一定全等的条件是( )
第27页(共27页)
A.∠BAF=∠DAE B.EC=FC C.AE=AF D.BE=DF
【解答】解:A.∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D,
∵∠BAF=∠DAE,
∴∠BAE=∠CAF,
∴△ABE≌△ADF(AAS),
故选项A不符合题意;
B..∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D,BC=BD,
∵EC=FC,
∴BE=DF,
∴△ABE≌△ADF(SAS),
故选项B不符合题意;
C..∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D,
∵AE=AF,
∴△ABE和△ADF只满足两边和一边的对角相等,两个三角形不一定全等,
故选项C符合题意;
D..∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D,
∵BE=DE,
∴△ABE≌△ADF(SAS),
故选项D不符合题意.
故选:C.
8.(3分)在一个不透明的袋子中装有黑球m个、白球n个、红球3个,除颜色外无其它差别,任意摸出一个球是红球的概率是( )
第27页(共27页)
A.3m+n B.3m+n+3 C.m+nm+n+3 D.m+n3
【解答】解:∵袋子中一共有(m+n+3)个小球,其中红球有3个,
∴任意摸出一个球是红球的概率是3m+n+3,
故选:B.
9.(3分)将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是( )
A.y=2(x﹣6)2 B.y=2(x﹣6)2+4
C.y=2x2 D.y=2x2+4
【解答】解:将将抛物线y=2(x﹣3)2+2向左平移3个单位长度所得抛物线解析式为:y=2(x﹣3+3)2+2,即y=2x2+2;
再向下平移2个单位为:y=2x2+2﹣2,即y=2x2.
故选:C.
10.(3分)如图,在Rt△ABC中,CD为斜边AB的中线,过点D作DE⊥AC于点E,延长DE至点F,使EF=DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:
①DE=12BC;
②四边形DBCF是平行四边形;
③EF=EG;
④BC=25.
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
【解答】解;∵CD为斜边AB的中线,
∴AD=BD,
∵∠ACB=90°,
∴BC⊥AC,
第27页(共27页)
∵DE⊥AC,
∴DE∥BC,
∴DE是△ABC的中位线,
∴AE=CE,DE=12BC;①正确;
∵EF=DE,
∴DF=BC,
∴四边形DBCF是平行四边形;②正确;
∴CF∥BD,CF=BD,
∵∠ACB=90°,CD为斜边AB的中线,
∴CD=12AB=BD,
∴CF=CD,
∴∠CFE=∠CDE,
∵∠CDE+∠EGC=180°,∠EGF+∠EGC=180°,
∴∠CDE=∠EGF,
∴∠CFE=∠EGF,
∴EF=EG,③正确;
作EH⊥FG于H,如图所示:
则∠EHF=∠CHE=90°,∠HEF+∠EFH=∠HEF+∠CEH=90°,FH=GH=12FG=1,
∴∠EFH=∠CEH,CH=GC+GH=3+1=4,
∴△EFH∽△CEH,
∴EHCH=FHEH,
∴EH2=CH×FH=4×1=4,
∴EH=2,
∴EF=FH2+EH2=12+22=5,
第27页(共27页)
∴BC=2DE=2EF=25,④正确;
故选:D.
二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内
11.(3分)新型冠状病毒蔓延全球,截至北京时间2020年6月20日,全球新冠肺炎累计确诊病例超过8500000例,数字8500000用科学记数法表示为 8.5×106 .
【解答】解:数字8500000用科学记数法表示为8.5×106,
故答案为:8.5×106.
12.(3分)甲、乙两位同学在近五次数学测试中,平均成绩均为90分,方差分别为S甲2=0.70,S乙2=0.73,甲、乙两位同学成绩较稳定的是 甲 同学.
【解答】解:∵S甲2=0.70,S乙2=0.73,
∴S甲2<S乙2,
∴甲、乙两位同学成绩较稳定的是甲同学,
故答案为:甲.
13.(3分)黑龙江省某企业用货车向乡镇运送农用物资,行驶2小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程y(km)与行驶时间x(h)的函数关系如图所示,2小时后货车的速度是 65 km/h.
【解答】解:由图象可得:货车行驶的路程y(km)与行驶时间x(h)的函数关系为y=78x(x≤2),和x>2时设其解析式为:y=kx+b,
把(2,156)和(3,221)代入解析式,可得:2k+b=1563k+b=221,
解得:k=65b=26,
所以解析式为:y=65x+26(x>2),
所以2小时后货车的速度是65km/h,
故答案为:65.
第27页(共27页)
14.(3分)因式分解:m3n2﹣m= m(mn+1)(mn﹣1) .
【解答】解:m3n2﹣m=m(m2n2﹣1)
=m(mn+1)(mn﹣1).
故答案为:m(mn+1)(mn﹣1).
15.(3分)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是 100 度.
【解答】解:设这个圆锥的侧面展开图的圆心角为n°,
根据题意得2π•2.5=nπ×9180,解得n=100,
即这个圆锥的侧面展开图的圆心角为100°.
故答案为:100.
16.(3分)在Rt△ABC中,∠C=90°,若AB﹣AC=2,BC=8,则AB的长是 17 .
【解答】解:∵在Rt△ABC中,∠C=90°,AB﹣AC=2,BC=8,
∴AC2+BC2=AB2,
即(AB﹣2)2+82=AB2,
解得AB=17.
故答案为:17.
17.(3分)在平面直角坐标系中,△ABC和△A1B1C1的相似比等于12,并且是关于原点O的位似图形,若点A的坐标为(2,4),则其对应点A1的坐标是 (4,8)或(﹣4,﹣8) .
【解答】解:∵△ABC和△A1B1C1的相似比等于12,并且是关于原点O的位似图形,
而点A的坐标为(2,4),
∴点A对应点A1的坐标为(2×2,2×4)或(﹣2×2,﹣2×4),
即(4,8)或(﹣4,﹣8).
故答案为(4,8)或(﹣4,﹣8).
18.(3分)在函数y=x-3x+1+1x-5中,自变量x的取值范围是 x≥3且x≠5 .
【解答】解:由题可得,x-3≥0x+1>0x-5≠0,
第27页(共27页)
解得x≥3x>-1x≠5,
∴自变量x的取值范围是x≥3且x≠5,
故答案为:x≥3且x≠5.
19.(3分)如图,正五边形ABCDE内接于⊙O,点P为DE上一点(点P与点D,点E不重合),连接PC、PD,DG⊥PC,垂足为G,∠PDG等于 54 度.
【解答】解:连接OC、OD,如图所示:
∵ABCDE是正五边形,
∴∠COD=360°5=72°,
∴∠CPD=12∠COD=36°,
∵DG⊥PC,
∴∠PGD=90°,
∴∠PDG=90°﹣∠CPD=90°﹣36°=54°,
故答案为:54.
20.(3分)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程 240x-2401.5x=2 .
【解答】解:设原计划每天加工零件x个,则实际每天加工零件1.5x个,
依题意,得:240x-2401.5x=2.
第27页(共27页)
故答案为:240x-2401.5x=2.
21.(3分)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是 119 .
【解答】解:∵图1中黑点的个数2×1×(1+1)÷2+(1﹣1)=2,
图2中黑点的个数2×2×(1+2)÷2+(2﹣1)=7,
图3中黑点的个数2×3×(1+3)÷2+(3﹣1)=14,
……
∴第n个图形中黑点的个数为2n(n+1)÷2+(n﹣1)=n2+2n﹣1,
∴第10个图形中黑点的个数为102+2×10﹣1=119.
故答案为:119.
三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内
22.(6分)(1)如图,已知线段AB和点O,利用直尺和圆规作△ABC,使点O是△ABC的内心(不写作法,保留作图痕迹);
(2)在所画的△ABC中,若∠C=90°,AC=6,BC=8,则△ABC的内切圆半径是 2 .
【解答】解:(1)如图,△ABC即为所求.
(2)设内切圆的半径为r.
∵∠C=90°,AC=6,BC=8,
第27页(共27页)
∴AB=AC2+BC2=62+82=10,
∴12•AC•BC=12•r•(AB+AC+BC),
∴r=4824=2,
故答案为2.
23.(6分)如图,热气球位于观测塔P的北偏西50°方向,距离观测塔100km的A处,它沿正南方向航行一段时间后,到达位于观测塔P的南偏西37°方向的B处,这时,B处距离观测塔P有多远?(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19.)
【解答】解:由已知得,∠A=50°,∠B=37°,PA=100,
在Rt△PAC中,∵sinA=PCPA,
∴PC=PA•sin50°≈77,
在Rt△PBC中,∵sinB=PCPB,
∴PB=PCsin37°≈128(km),
答:这时,B处距离观测塔P有128km.
24.(6分)如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O均为格点(每个小正方形的顶点叫做格点).
(1)作点A关于点O的对称点A1;
(2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1,画出旋转后的线段A1B1;
(3)连接AB1,求出四边形ABA1B1的面积.
第27页(共27页)
【解答】解:(1)如图所示,点A1即为所求;
(2)如图所示,线段A1B1即为所求;
(3)如图,连接BB1,过点A作AE⊥BB1,过点A1作A1F⊥BB1,则
四边形ABA1B1的面积=S△ABB1+S△A1BB1=12×8×2+12×8×4=24.
25.(6分)为了解本校九年级学生体育测试项目“400米跑”的训练情况,体育教师在2019年1﹣5月份期间,每月随机抽取部分学生进行测试,将测试成绩分为:A,B,C,D四个等级,并绘制如图两幅统计图根据统计图提供的信息解答下列问题:
第27页(共27页)
(1) 1 月份测试的学生人数最少, 4 月份测试的学生中男生、女生人数相等;
(2)求扇形统计图中D等级人数占5月份测试人数的百分比;
(3)若该校2019年5月份九年级在校学生有600名,请你估计出测试成绩是A等级的学生人数.
【解答】解:(1)根据折线统计图给出的数据可得:1月份测试的学生人数最少,4月份测试的学生中男生、女生人数相等;
故答案为:1,4;
(2)D等级人数占5月份测试人数的百分比是:1﹣25%﹣40%-72°360°=15%;
(3)根据题意得:
600×25%=150(名),
答:测试成绩是A等级的学生人数有150名.
26.(7分)如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.
(1)求证:直线BG与⊙O相切;
(2)若BEOD=54,求EFAC的值.
【解答】解:(1)连接OB,如图,
∵CD是⊙O的直径,
∴∠DBC=90°,
∴∠D+∠BCD=90°,
∵OB=OC,
第27页(共27页)
∴∠OCB=∠OBC,
∴∠D+∠OBC=90°,
∵∠D=∠BAC,∠BAC=∠CBG,
∴∠CBG+∠OBC=90°,
即∠OBG=90°,
∴直线BG与⊙O相切;
(2)∵OA=OC,OH⊥AC,
∴∠COH=12∠COA,CH=12CA,
∵∠ABC=12∠AOC,
∴∠EBF=∠COH,
∵EF⊥BC,OH⊥AC,
∴∠BEF=∠OHC=90°,
∴△BEF∽△COH,
∴EFCH=BEOC,
∵BEOD=54,OC=OD,
∴EFCH=54,
∵CH=12AC,
∴EFAC=58,
27.(7分)如图,在矩形OABC中,AB=2,BC=4,点D是边AB的中点,反比例函数y1
第27页(共27页)
=kx(x>0)的图象经过点D,交BC边于点E,直线DE的解析式为y2=mx+n(m≠0).
(1)求反比例函数y1=kx(x>0)的解析式和直线DE的解析式;
(2)在y轴上找一点P,使△PDE的周长最小,求出此时点P的坐标;
(3)在(2)的条件下,△PDE的周长最小值是 5+13 .
【解答】解:(1)∵点D是边AB的中点,AB=2,
∴AD=1,
∵四边形OABC是矩形,BC=4,
∴D(1,4),
∵反比例函数y1=kx(x>0)的图象经过点D,
∴k=4,
∴反比例函数的解析式为y=4x(x>0),
当x=2时,y=2,
∴E(2,2),
把D(1,4)和E(2,2)代入y2=mx+n(m≠0)得,2m+n=2m+n=4,
∴m=-2n=6,
∴直线DE的解析式为y=﹣2x+6;
(2)作点D关于y轴的对称点D′,连接D′E交y轴于P,连接PD,
此时,△PDE的周长最小,
∵D点的坐标为(1,4),
∴D′的坐标为(﹣1,4),
第27页(共27页)
设直线D′E的解析式为y=ax+b,
∴4=-a+b2=2a+b,
解得:a=-23b=103,
∴直线D′E的解析式为y=-23x+103,
令x=0,得y=103,
∴点P的坐标为(0,103);
(3)∵D(1,4),E(2,2),
∴BE=2,BD=1,
∴DE=12+22=5,
由(2)知,D′的坐标为(﹣1,4),
∴BD′=3,
∴D′E=22+32=13,
∴△PDE的周长最小值=DE+D′E=5+13,
故答案为:5+13.
28.(9分)如图,在正方形ABCD中,AB=4,点G在边BC上,连接AG,作DE⊥AG于点E,BF⊥AG于点F,连接BE、DF,设∠EDF=α,∠EBF=β,BGBC=k.
(1)求证:AE=BF;
(2)求证:tanα=k•tanβ;
(3)若点G从点B沿BC边运动至点C停止,求点E,F所经过的路径与边AB围成的图形的面积.
第27页(共27页)
【解答】解:(1)证明:在正方形ABCD中,AB=BC=AD,∠BAD=∠ABC=90°,
∵DE⊥AG,BF⊥AG,
∴∠AED=∠BFA=90°,
∴∠ADE+∠DAE=90°,
∵∠BAF+∠DAE=90°,
∴∠ADE=∠BAF,
∴△ABF≌△DAE(AAS),
∴AE=BF;
(2)在Rt△DEF和Rt△EFB中,tanα=EFDE,tanβ=EFBF,
∴tanαtanβ=EFDE⋅BFEF=BFDE.
由①可知∠ADE=∠BAG,∠AED=∠GBA=90°,
∴△AED∽△GBA,
∴AEGB=DEAB,
由①可知,AE=BF,
∴BFGB=DEAB,
∴BFDE=GBAB,
∵BGBC=k,AB=BC,
∴BFDE=BGAB=BGBC=k,
∴tanαtanβ=k.
∴tanα=ktanβ.
(3)∵DE⊥AG,BF⊥AG,
第27页(共27页)
∴∠AED=∠BFA=90°,
∴当点G从点B沿BC边运动至点C停止时,点E经过的路径是以AD为直径,圆心角为90°的圆弧,
同理可得点F经过的路径,两弧交于正方形的中心点O,如图.
∵AB=AD=4,
∴所围成的图形的面积为S=S△AOB=14×4×4=4.
29.(10分)如图1,抛物线y=-12(x+2)2+6与抛物线y1=﹣x2+12tx+t﹣2相交y轴于点C,抛物线y1与x轴交于A、B两点(点B在点A的右侧),直线y2=kx+3交x轴负半轴于点N,交y轴于点M,且OC=ON.
(1)求抛物线y1的解析式与k的值;
(2)抛物线y1的对称轴交x轴于点D,连接AC,在x轴上方的对称轴上找一点E,使以点A,D,E为顶点的三角形与△AOC相似,求出DE的长;
(3)如图2,过抛物线y1上的动点G作GH⊥x轴于点H,交直线y2=kx+3于点Q,若点Q'是点Q关于直线MG的对称点,是否存在点G(不与点C重合),使点Q'落在y轴上?若存在,请直接写出点G的横坐标,若不存在,请说明理由.
【解答】解:(1)当x=0时,得y=-12(x+2)2+6=﹣2+6=4,
∴C(0,4),
第27页(共27页)
把C(0,4)代入y1=﹣x2+12tx+t﹣2得,t﹣2=4,
∴t=6,
∴y1=﹣x2+3x+4,
∵ON=OC,
∴N(﹣4,0),
把N(﹣4,0)代入y2=kx+3中,得﹣4k+3=0,
解得,k=34;
∴抛物线y1的解析式为y1=﹣x2+3x+4,k的值为34.
(2)连接AE,如图1,
令y=0,得y1=﹣x2+3x+4=0,
解得,x=﹣1或4,
∴A(﹣1,0),B(4,0),
∴对称轴为:x=-1+42=32,
∴D(32,0),
∴OA=1,OC=4,OD=32,AD=52,
①当△AOC∽△EDA时,
OADE=OCDA,即1DE=452,
∴DE=58,
②当△AOC∽△ADE时,
第27页(共27页)
AOAD=OCDE,即152=4DE,
∴DE=10,
综上,DE=58或10;
(3)点G的横坐标为7+654或7-654或1+52或1-52.
如图,点Q'是点Q关于直线MG的对称点,且点Q'在y轴上时,由轴对称性质可知,QM=Q'M,QG=Q'G,∠Q'MG=∠QMG,
∵QG⊥x轴,
∴QG∥y轴,
∴∠Q'MG=∠QGM,
∴∠QMG=∠QGM,
∴QM=QG,
∴QM=Q'M=QG=Q'G,
∴四边形QMQ'G为菱形,
∴GQ'∥QN,
作GP⊥y轴于点P,设G(a,﹣a2+3a+4),则Q(a,34a+3),
∴PG=|a|,Q'G=GQ=|(34a+3)﹣(﹣a2+3a+4)|=|a2-94a﹣1|,
∵GQ'∥QN,
∴∠GQ'P=∠NMO,
在Rt△NMO中,MN=NO2+MO2=5,
∴sin∠GQ'P=sin∠NMO=NOMN=PGGQ'=45,
第27页(共27页)
∴|a||a2-94a-1|=45.
解得a1=7+654,a2=7-654,a3=1+52,a4=1-52.
经检验,a1=7+654,a2=7-654,a3=1+52,a4=1-52都是所列方程的解.
综合以上可得,点G的横坐标为7+654或7-654或1+52或1-52.
第27页(共27页)
相关文档
- (淄博专版)2020届中考语文 阅读组合2021-05-135页
- 北京市平谷区中考化学一模试卷2021-05-1311页
- 人教版九年级化学中考复习第一轮2021-05-1337页
- 2019年中考语文真题试题(含解析)(新版2021-05-1315页
- 2012中考英语作文热点话题22021-05-1326页
- (云南专用版)2020版中考化学 第1部分2021-05-135页
- 重庆市初三数学中考模拟题无答案2021-05-138页
- 2019中考物理一轮练习学案透镜及其2021-05-134页
- 中考物理模拟试题十一及答案2021-05-137页
- 2020年中考语文试题分项版解析汇编2021-05-1327页